Fogg, D. E. & dos Santos, E. N. Tandem catalysis: a taxonomy and illustrative evaluation. Coord. Chem. Rev. 248, 2365–2379 (2004).
Zhang, F. et al. Polyethylene upcycling to long-chain alkylaromatics by tandem hydrogenolysis/aromatization. Science 370, 437–441 (2020).
Yan, H. et al. Tandem In2O3-Pt/Al2O3 catalyst for coupling of propane dehydrogenation to selective H2 combustion. Science 371, 1257–1260 (2021).
Monai, M. et al. Propane to olefins tandem catalysis: a selective route in the direction of mild olefins manufacturing. Chem. Soc. Rev. 50, 11503–11529 (2021).
Zhang, M. et al. Pickering emulsion droplets and stable microspheres performing synergistically for continuous-flow cascade reactions. Nat. Catal. 7, 295–306 (2024).
Zou, H. et al. Twin steel nanoparticles inside multicompartmentalized mesoporous organosilicas for environment friendly sequential hydrogenation. Nat. Commun. 12, 4968 (2021).
Li, Y. et al. Distance for communication between steel and acid websites for syngas conversion. ACS Catal. 12, 8793–8801 (2022).
Ma, Y. et al. Transforming nanodroplets into hierarchical mesoporous silica nanoreactors with a number of chambers. Nat. Commun. 13, 6136 (2022).
Pei, C. & Gong, J. Tandem catalysis at nanoscale. Science 371, 1203–1204 (2021).
Lim, Ok. R. G. et al. Nanoparticle proximity controls selectivity in benzaldehyde hydrogenation. Nat. Catal. 7, 172–184 (2024).
Nivina, A. et al. Evolution and variety of assembly-line polyketide synthases. Chem. Rev. 119, 12524–12547 (2019).
Shklyaev, O. E. & Balazs, A. C. Interlinking spatial dimensions and kinetic processes in dissipative supplies to create artificial programs with lifelike performance. Nat. Nanotechnol. 19, 146–159 (2024).
Wu, X. & Xu, D. Formation of yolk/SiO2 shell buildings utilizing surfactant mixtures as template. J. Am. Chem. Soc. 131, 2774–2775 (2009).
Teng, Z. et al. A facile multi-interface transformation method to monodisperse multiple-shelled periodic mesoporous organosilica hole spheres. J. Am. Chem. Soc. 137, 7935–7944 (2015).
Marguet, M., Bonduelle, C. & Lecommandoux, S. Multicompartmentalized polymeric programs: in the direction of biomimetic mobile construction and performance. Chem. Soc. Rev. 42, 512–529 (2013).
Schoonen, L. & van Hest, J. C. M. Compartmentalization approaches in delicate matter science: from nanoreactor growth to organelle mimics. Adv. Mater. 28, 1109–1128 (2016).
Suteewong, T. et al. Multicompartment mesoporous silica nanoparticles with branched shapes: an epitaxial progress mechanism. Science 340, 337–341 (2013).
Han, F. et al. On demand synthesis of hole fullerene nanostructures. Nat. Commun. 10, 1548 (2019).
Han, F. et al. Exact dimerization of hole fullerene compartments. J. Am. Chem. Soc. 142, 15396–15402 (2020).
Ma, Y. et al. Synthesis of branched silica nanotrees utilizing a nanodroplet sequential fusion technique. Nat. Synth. 3, 236–244 (2024).
Yu, Z. et al. Ruthenium-nanoparticle-loaded hole carbon spheres as nanoreactors for hydrogenation of levulinic acid: explicitly recognizing the void-confinement impact. Angew. Chem. Int. Ed. 60, 20786–20794 (2021).
Wei, Y. et al. A common formation mechanism of hole multi-shelled buildings dominated by focus waves. Angew. Chem. Int. Ed. 62, e202302621 (2023).
Peters, R. J. R. W. et al. Cascade reactions in multicompartmentalized polymersomes. Angew. Chem. Int. Ed. 126, 150–154 (2014).
Chong, W. et al. Stirring in suspension: nanometer-sized magnetic stir bars. Angew. Chem. Int. Ed. 125, 8732–8735 (2013).
Yang, S. et al. Nanoscale magnetic stirring bars for heterogeneous catalysis in microscopic programs. Angew. Chem. Int. Ed. 127, 2699–2702 (2015).
Zhou, X. et al. Enhancing response charge in a Pickering emulsion system with pure magnetotactic micro organism as nanoscale magnetic stirring bars. Chem. Sci. 9, 2575–2580 (2018).
Wang, H. et al. Unconventional chain-growth mode within the meeting of colloidal gold nanoparticles. Angew. Chem. Int. Ed. 51, 8021–8025 (2012).
Yang, Y. et al. Spindle-shaped nanoscale yolk/shell magnetic stirring bars for heterogeneous catalysis in macro- and microscopic programs. Chem. Commun. 52, 1575–1578 (2016).
Zhang, T. et al. Co@C nanorods as each magnetic stirring nanobars and magnetic recyclable nanocatalysts for microcatalytic reactions. Appl. Catal. B 304, 120925 (2022).
Ji, Q. et al. Scalable and steady preparation of nano-stirbars by electrospinning. Chem. Commun. 56, 11767–11770 (2020).
Aubert, T. et al. Two-dimensional superstructures of silica cages. Adv. Mater. 32, 1908362 (2020).
Zhang, T. et al. Synthesis of podlike magnetic mesoporous silica nanochains to be used as enzyme help and nanostirrer in biocatalysis. ACS Appl. Mater. Interfaces 12, 17901–17908 (2020).
Wan, L. et al. A magnetic-field guided interface coassembly method to magnetic mesoporous silica nanochains for osteoclast-targeted inhibition and heterogeneous nanocatalysis. Adv. Mater. 30, 1707515 (2018).
Ebensperger, P. et al. A dual-metal-catalyzed sequential cascade response in an engineered protein cage. Angew. Chem. Int. Ed. 62, e202218413 (2023).
Ma, Y. et al. Streamlined mesoporous silica nanoparticles with tunable curvature from interfacial dynamic-migration technique for nanomotors. Nano Lett. 21, 6071–6079 (2021).