Enhancing spectroscopy and microscopy with rising strategies in photon correlation and quantum illumination


  • Eisaman, M. D., Fan, J., Migdall, A. & Polyakov, S. V. Invited Assessment Article: Single-photon sources and detectors. Rev. Sci. Instrum. 82, 071101 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Cusini, I. et al. Historic views, state of artwork and analysis developments of single photon avalanche diodes and their functions (Half 1: single pixels). Entrance. Phys. 10, 906675 (2022).


    Google Scholar
     

  • Cusini, I. et al. Historic views, state of artwork and analysis developments of SPAD arrays and their functions (Half II: SPAD arrays). Entrance. Phys. 10, 906671 (2022).


    Google Scholar
     

  • Hadfield, R. H. et al. Single-photon detection for long-range imaging and sensing. Optica 10, 1124–1141 (2023).

    CAS 

    Google Scholar
     

  • You, L. Superconducting nanowire single-photon detectors for quantum data. Nanophotonics 9, 2673–2692 (2020).

    CAS 

    Google Scholar
     

  • Esmaeil et al. Superconducting nanowire single-photon detectors: a perspective on evolution, state-of-the-art, future developments, and functions. Appl. Phys. Lett. 118, 190502 (2021).


    Google Scholar
     

  • Lau, J. A., Verma, V. B., Schwarzer, D. & Wodtke, A. M. Superconducting single-photon detectors within the mid-infrared for bodily chemistry and spectroscopy. Chem. Soc. Rev. 52, 921–941 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Anwar, A., Perumangatt, C., Steinlechner, F., Jennewein, T. & Ling, A. Entangled photon-pair sources based mostly on three-wave mixing in bulk crystals. Rev. Sci. Instrum. 92, 041101 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Orieux, A., Versteegh, M. A. M., Jöns, Okay. D. & Ducci, S. Semiconductor units for entangled photon pair era: a assessment. Rep. Prog. Phys. 80, 076001 (2017).

    PubMed 

    Google Scholar
     

  • Schimpf, C. et al. Quantum dots as potential sources of strongly entangled photons: views and challenges for functions in quantum networks. Appl. Phys. Lett. 118, 100502 (2021).

    CAS 

    Google Scholar
     

  • Achar, S., Kundu, A., Chilukoti, A. & Sharma, A. Single and entangled photon pair era utilizing atomic vapors for quantum communication functions. Entrance. Quantum Sci. Technol. 3, 1438340 (2024).


    Google Scholar
     

  • Ceccarelli, F. et al. Latest advances and future views of single-photon avalanche diodes for quantum photonics functions. Adv. Quantum Technol. 4, 2000102 (2021).

    CAS 

    Google Scholar
     

  • Natarajan, C. M., Tanner, M. G. & Hadfield, R. H. Superconducting nanowire single-photon detectors: physics and functions. Supercond. Sci. Technol. 25, 063001 (2012).


    Google Scholar
     

  • Lubin, G. et al. Quantum correlation measurement with single photon avalanche diode arrays. Decide. Specific 27, 32863 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Lubin, G. et al. Heralded spectroscopy reveals exciton–exciton correlations in single colloidal quantum dots. Nano Lett. 21, 6756–6763 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Szoke, S., He, M., Hickam, B. P. & Cushing, S. Okay. Designing high-power, octave spanning entangled photon sources for quantum spectroscopy. J. Chem. Phys. 154, 244201 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Sultanov, V. et al. Tunable entangled photon-pair era in a liquid crystal. Nature 631, 294–299 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lubin, G., Oron, D., Rossman, U., Tenne, R. & Yallapragada, V. J. Photon correlations in spectroscopy and microscopy. ACS Photonics 9, 2891–2904 (2022).

    CAS 

    Google Scholar
     

  • Stetefeld, J., McKenna, S. A. & Patel, T. R. Dynamic gentle scattering: a sensible information and functions in biomedical sciences. Biophys. Rev. 8, 409–427 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lloyd, S. Enhanced sensitivity of photodetection through quantum illumination. Science 321, 1463–1465 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Facet, A., Dalibard, J. & Roger, G. Experimental check of Bell’s inequalities utilizing time-varying analyzers. Phys. Rev. Lett. 49, 1804–1807 (1982).


    Google Scholar
     

  • Meystre, P. Theoretical developments in cavity quantum optics: a quick assessment. Phys. Rep. 219, 243–262 (1992).


    Google Scholar
     

  • Srivathsan, B. et al. Slim band supply of transform-limited photon pairs through four-wave mixing in a chilly atomic ensemble. Phys. Rev. Lett. 111, 123602 (2013).

    PubMed 

    Google Scholar
     

  • David, A. & Miller, B. in Quantum Dynamics of Easy Programs (eds Oppo, G.-L. et al.) 239–266 (CRC Press, 2020); https://doi.org/10.1201/9781003072973-9

  • Bassett, L. C., Alkauskas, A., Exarhos, A. L. & Fu, Okay.-M. C. Quantum defects by design. Nanophotonics 8, 1867–1888 (2019).

    CAS 

    Google Scholar
     

  • Hohenester, U. Nano and Quantum Optics: An Introduction to Primary Rules and Principle (Springer, 2019).

  • Defienne, H. et al. Advances in quantum imaging. Nat. Photon. 18, 1024–1036 (2024).

    CAS 

    Google Scholar
     

  • Kimble, H. J., Dagenais, M. & Mandel, L. Photon antibunching in resonance fluorescence. Phys. Rev. Lett. 39, 691–695 (1977).

    CAS 

    Google Scholar
     

  • Hollars, C. W., Lane, S. M. & Huser, T. Managed non-classical photon emission from single conjugated polymer molecules. Chem. Phys. Lett. 370, 393–398 (2003).

    CAS 

    Google Scholar
     

  • Kumar, P. et al. Photon antibunching from oriented semiconducting polymer nanostructures. J. Am. Chem. Soc. 126, 3376–3377 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • He, Y.-M. et al. Single quantum emitters in monolayer semiconductors. Nat. Nanotechnol. 10, 497–502 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Chakraborty, C., Kinnischtzke, L., Goodfellow, Okay. M., Beams, R. & Vamivakas, A. N. Voltage-controlled quantum gentle from an atomically skinny semiconductor. Nat. Nanotechnol. 10, 507–511 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Koperski, M. et al. Single photon emitters in exfoliated WSe2 constructions. Nat. Nanotechnol. 10, 503–506 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Srivastava, A. et al. Optically lively quantum dots in monolayer WSe2. Nat. Nanotechnol. 10, 491–496 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Tran, T. T., Bray, Okay., Ford, M. J., Toth, M. & Aharonovich, I. Quantum emission from hexagonal boron nitride monolayers. Nat. Nanotechnol. 11, 37–41 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Michler, P. et al. Quantum correlation amongst photons from a single quantum dot at room temperature. Nature 406, 968–970 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • Somaschi, N. et al. Close to-optimal single-photon sources within the strong state. Nat. Photon. 10, 340–345 (2016).

    CAS 

    Google Scholar
     

  • Nair, G., Zhao, J. & Bawendi, M. G. Biexciton quantum yield of single semiconductor nanocrystals from photon statistics. Nano Lett. 11, 1136–1140 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koley, S. et al. Photon correlations in colloidal quantum dot molecules managed by the neck barrier. Matter 5, 3997–4014 (2022).

    CAS 

    Google Scholar
     

  • Zhu, H. et al. One-dimensional highly-confined CsPbBr3 nanorods with enhanced stability: synthesis and spectroscopy. Nano Lett. 22, 8355–8362 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Ma, X. et al. Dimension-dependent biexciton quantum yields and service dynamics of quasi-two-dimensional core/shell nanoplatelets. ACS Nano 11, 9119–9127 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Mangum, B. D. et al. Affect of the core measurement on biexciton quantum yield of large CdSe/CdS nanocrystals. Nanoscale 6, 3712–3720 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Brouri, R., Beveratos, A., Poizat, J.-P. & Grangier, P. Photon antibunching within the fluorescence of particular person colour facilities in diamond. Decide. Lett. 25, 1294 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • Basché, T., Moerner, W. E., Orrit, M. & Talon, H. Photon antibunching within the fluorescence of a single dye molecule trapped in a strong. Phys. Rev. Lett. 69, 1516–1519 (1992).

    PubMed 

    Google Scholar
     

  • Tamarat, P. et al. The darkish exciton floor state promotes photon-pair emission in particular person perovskite nanocrystals. Nat. Commun. 11, 6001 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fleury, L., Segura, J.-M., Zumofen, G., Hecht, B. & Wild, U. P. Nonclassical photon statistics in single-molecule fluorescence at room temperature. Phys. Rev. Lett. 84, 1148–1151 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • Dräbenstedt, A. et al. Low-temperature microscopy and spectroscopy on single defect facilities in diamond. Phys. Rev. B 60, 11503–11508 (1999).


    Google Scholar
     

  • Dicke, R. H. Coherence in spontaneous radiation processes. Phys. Rev. 93, 99–110 (1954).

    CAS 

    Google Scholar
     

  • Lange, C. M., Daggett, E., Walther, V., Huang, L. & Hood, J. D. Superradiant and subradiant states in lifetime-limited natural molecules by way of laser-induced tuning. Nat. Phys. 20, 836–842 (2024).

    CAS 

    Google Scholar
     

  • Bonifacio, R. & Lugiato, L. A. Cooperative radiation processes in two-level methods: superfluorescence. Phys. Rev. A 11, 1507–1521 (1975).


    Google Scholar
     

  • Bonifacio, R. & Lugiato, L. A. Cooperative radiation processes in two-level methods: superfluorescence. II. Phys. Rev. A 12, 587–598 (1975).


    Google Scholar
     

  • Skribanowitz, N., Herman, I. P., MacGillivray, J. C. & Feld, M. S. Statement of Dicke superradiance in optically pumped HF gasoline. Phys. Rev. Lett. 30, 309–312 (1973).


    Google Scholar
     

  • Fidder, H., Knoester, J. & Wiersma, D. A. Superradiant emission and optical dephasing in J-aggregates. Chem. Phys. Lett. 171, 529–536 (1990).

    CAS 

    Google Scholar
     

  • Lim, S.-H., Bjorklund, T. G., Spano, F. C. & Bardeen, C. J. Exciton delocalization and superradiance in tetracene skinny movies and nanoaggregates. Phys. Rev. Lett. 92, 107402 (2004).

    PubMed 

    Google Scholar
     

  • Meinardi, F., Cerminara, M., Sassella, A., Bonifacio, R. & Tubino, R. Superradiance in molecular H aggregates. Phys. Rev. Lett. 91, 247401 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • Spano, F. C. The spectral signatures of Frenkel polarons in H- and J-aggregates. Acc. Chem. Res. 43, 429–439 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Wang, H. Z., Zheng, X. G., Zhao, F. L., Gao, Z. L. & Yu, Z. X. Superradiance of excessive density frenkel excitons at room temperature. Phys. Rev. Lett. 74, 4079–4082 (1995).

    CAS 
    PubMed 

    Google Scholar
     

  • Monshouwer, R., Abrahamsson, M., van Mourik, F. & van Grondelle, R. Superradiance and exciton delocalization in bacterial photosynthetic light-harvesting methods. J. Phys. Chem. B 101, 7241–7248 (1997).

    CAS 

    Google Scholar
     

  • Scheibner, M. et al. Superradiance of quantum dots. Nat. Phys. 3, 106–110 (2007).

    CAS 

    Google Scholar
     

  • Kim, J.-H., Aghaeimeibodi, S., Richardson, C. J. Okay., Leavitt, R. P. & Waks, E. Tremendous-radiant emission from quantum dots in a nanophotonic waveguide. Nano Lett. 18, 4734–4740 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Grim, J. Q. et al. Scalable in operando pressure tuning in nanophotonic waveguides enabling three-quantum-dot superradiance. Nat. Mater. 18, 963–969 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, L. et al. New insights into the multiexciton dynamics in phase-pure thick-shell CdSe/CdS quantum dots. J. Phys. Chem. C 122, 25059–25066 (2018).

    CAS 

    Google Scholar
     

  • Zhu, C. et al. Single-photon superradiance in particular person caesium lead halide quantum dots. Nature 626, 535–541 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, Okay. et al. Room-temperature upconverted superfluorescence. Nat. Photon. 16, 737–742 (2022).

    CAS 

    Google Scholar
     

  • Sipahigil, A. et al. An built-in diamond nanophotonics platform for quantum-optical networks. Science 354, 847–850 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Rainò, G. et al. Superfluorescence from lead halide perovskite quantum dot superlattices. Nature 563, 671–675 (2018).

    PubMed 

    Google Scholar
     

  • Findik, G. et al. Excessive-temperature superfluorescence in methyl ammonium lead iodide. Nat. Photon. 15, 676–680 (2021).

    CAS 

    Google Scholar
     

  • Biliroglu, M. et al. Room-temperature superfluorescence in hybrid perovskites and its origins. Nat. Photon. 16, 324–329 (2022).

    CAS 

    Google Scholar
     

  • Schedlbauer, J. et al. Monitoring exciton diffusion and exciton annihilation in single nanoparticles of conjugated polymers by photon correlation spectroscopy. Adv. Decide. Mater. 10, 2200092 (2022).

    CAS 

    Google Scholar
     

  • Hofkens, J. et al. Revealing aggressive Förster-type resonance energy-transfer pathways in single bichromophoric molecules. Proc. Natl Acad. Sci. USA 100, 13146–13151 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bernard, J., Fleury, L., Talon, H. & Orrit, M. Photon bunching within the fluorescence from single molecules: a probe for intersystem crossing. J. Chem. Phys. 98, 850–859 (1993).

    CAS 

    Google Scholar
     

  • Hedley, G. J. et al. Picosecond time-resolved photon antibunching measures nanoscale exciton movement and the true variety of chromophores. Nat. Commun. 12, 1327 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stevens, M. J., Glancy, S., Nam, S. W. & Mirin, R. P. Third-order antibunching from an imperfect single-photon supply. Decide. Specific 22, 3244 (2014).

    PubMed 

    Google Scholar
     

  • Rundquist, A. et al. Nonclassical higher-order photon correlations with a quantum dot strongly coupled to a photonic-crystal nanocavity. Phys. Rev. A 90, 023846 (2014).


    Google Scholar
     

  • Amgar, D., Yang, G., Tenne, R. & Oron, D. Increased-order photon correlation as a device to review exciton dynamics in quasi-2D nanoplatelets. Nano Lett. 19, 8741–8748 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Frenkel, N. et al. Two biexciton sorts coexisting in coupled quantum dot molecules. ACS Nano 17, 14990–15000 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lubin, G. et al. Resolving the controversy in biexciton binding power of cesium lead halide perovskite nanocrystals by way of heralded single-particle spectroscopy. ACS Nano 15, 19581–19587 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wollman, E. E. et al. Kilopixel array of superconducting nanowire single-photon detectors. Decide. Specific 27, 35279 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Oripov, B. G. et al. A superconducting nanowire single-photon digicam with 400,000 pixels. Nature 622, 730–734 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Zasedatelev, A. V. et al. Single-photon nonlinearity at room temperature. Nature 597, 493–497 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Pei, J., Yang, J., Yildirim, T., Zhang, H. & Lu, Y. Many-body complexes in 2D semiconductors. Adv. Mater. 31, 1706945 (2019).


    Google Scholar
     

  • Gu, B. & Mukamel, S. Photon correlation indicators in coupled-cavity polaritons created by entangled gentle. ACS Photonics 9, 938–943 (2022).

    CAS 

    Google Scholar
     

  • Dertinger, T., Colyer, R., Iyer, G., Weiss, S. & Enderlein, J. Quick, background-free, 3D super-resolution optical fluctuation imaging (SOFI). Proc. Natl Acad. Sci. USA 106, 22287–22292 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dertinger, T., Colyer, R., Vogel, R., Enderlein, J. & Weiss, S. Reaching elevated decision and extra pixels with superresolution optical fluctuation imaging (SOFI). Decide. Specific 18, 18875 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sroda, A. et al. SOFISM: super-resolution optical fluctuation picture scanning microscopy. Optica 7, 1308 (2020).


    Google Scholar
     

  • Zhao, G., Zheng, C., Kuang, C. & Liu, X. Decision-enhanced SOFI through structured illumination. Decide. Lett. 42, 3956 (2017).

    PubMed 

    Google Scholar
     

  • Schwartz, O. & Oron, D. Improved decision in fluorescence microscopy utilizing quantum correlations. Phys. Rev. A 85, 033812 (2012).


    Google Scholar
     

  • Schwartz, O. et al. Superresolution microscopy with quantum emitters. Nano Lett. 13, 5832–5836 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Tenne, R. et al. Tremendous-resolution enhancement by quantum picture scanning microscopy. Nat. Photon. 13, 116–122 (2019).

    CAS 

    Google Scholar
     

  • Chen, Y., Tsao, C., Cobb-Bruno, C. & Utzat, H. Stochastic frequency fluctuation super-resolution imaging. Decide. Specific 33, 6514–6525 (2025).

    PubMed 

    Google Scholar
     

  • Meuret, S. et al. Nanoscale relative emission effectivity mapping utilizing cathodoluminescence g(2) imaging. Nano Lett. 18, 2288–2293 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tizei, L. H. G. & Kociak, M. Spatially resolved quantum nano-optics of single photons utilizing an electron microscope. Phys. Rev. Lett. 110, 153604 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Meuret, S. et al. Lifetime measurements effectively beneath the optical diffraction restrict. ACS Photonics 3, 1157–1163 (2016).

    CAS 

    Google Scholar
     

  • Yanagimoto, S. et al. Time-correlated electron and photon counting microscopy. Commun. Phys. 6, 260 (2023).


    Google Scholar
     

  • Rosławska, A. et al. Atomic-scale dynamics probed by photon correlations. ACS Nano 14, 6366–6375 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yanagimoto, S., Yamamoto, N., Yuge, T., Sannomiya, T. & Akiba, Okay. Unveiling the character of cathodoluminescence from photon statistics. Commun. Phys. 8, 56 (2025).


    Google Scholar
     

  • Meuret, S. et al. Photon bunching in cathodoluminescence. Phys. Rev. Lett. 114, 197401 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Kazakevich, E., Aharon, H. & Kfir, O. Spatial electron-photon entanglement. Phys. Rev. Res. 6, 043033 (2024).

    CAS 

    Google Scholar
     

  • Harper, N., Hickam, B. P., He, M. & Cushing, S. Okay. Entangled photon correlations permit a continuous-wave laser diode to measure single-photon, time-resolved fluorescence. J. Phys. Chem. Lett. 14, 5805–5811 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Eshun, A. et al. Fluorescence lifetime measurements utilizing photon pair correlations generated through spontaneous parametric down conversion (SPDC). Decide. Specific 31, 26935 (2023).

    PubMed 

    Google Scholar
     

  • Li, Q. et al. Single-photon absorption and emission from a pure photosynthetic advanced. Nature 619, 300–304 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eshun, A., Varnavski, O., Villabona-Monsalve, J. P., Burdick, R. Okay. & Goodson, T. I. Entangled photon spectroscopy. Acc. Chem. Res. 55, 991–1003 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Hickam, B. P., He, M., Harper, N., Szoke, S. & Cushing, S. Okay. Single-photon scattering can account for the discrepancies amongst entangled two-photon measurement strategies. J. Phys. Chem. Lett. 13, 4934–4940 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Varnavski, O. & Goodson, T. I. Two-photon fluorescence microscopy at extraordinarily low excitation depth: the facility of quantum correlations. J. Am. Chem. Soc. 142, 12966–12975 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Steinberg, A. M., Kwiat, P. G. & Chiao, R. Y. Dispersion cancellation in a measurement of the single-photon propagation velocity in glass. Phys. Rev. Lett. 68, 2421–2424 (1992).

    CAS 
    PubMed 

    Google Scholar
     

  • Ou, Z.-Y. J. Multi-Photon Quantum Interference (Springer, 2007); https://doi.org/10.1007/978-0-387-25554-5

  • Ryu, J., Cho, Okay., Oh, C.-H. & Kang, H. All-order dispersion cancellation and energy-time entangled state. Decide. Specific 25, 1360 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Okano, M. et al. Dispersion cancellation in high-resolution two-photon interference. Phys. Rev. A 88, 043845 (2013).


    Google Scholar
     

  • Lyons, A. et al. Attosecond-resolution Hong–Ou–Mandel interferometry. Sci. Adv. 4, eaap9416 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ndagano, B. et al. Quantum microscopy based mostly on Hong–Ou–Mandel interference. Nat. Photon. 16, 384–389 (2022).

    CAS 

    Google Scholar
     

  • Dorfman, Okay. E., Asban, S., Gu, B. & Mukamel, S. Hong–Ou–Mandel interferometry and spectroscopy utilizing entangled photons. Commun. Phys. 4, 49 (2021).


    Google Scholar
     

  • Kalashnikov, D. A. et al. Quantum interference within the presence of a resonant medium. Sci. Rep. 7, 11444 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eshun, A. et al. Investigations of molecular optical properties utilizing quantum gentle and Hong–Ou–Mandel interferometry. J. Am. Chem. Soc. 143, 9070–9081 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Gregory, T., Moreau, P.-A., Toninelli, E. & Padgett, M. J. Imaging by way of noise with quantum illumination. Sci. Adv. 6, eaay2652 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Defienne, H., Reichert, M., Fleischer, J. W. & Faccio, D. Quantum picture distillation. Sci. Adv. 5, eaax0307 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morris, P. A., Aspden, R. S., Bell, J. E. C., Boyd, R. W. & Padgett, M. J. Imaging with a small variety of photons. Nat. Commun. 6, 5913 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Brida, G., Genovese, M. & Ruo Berchera, I. Experimental realization of sub-shot-noise quantum imaging. Nat. Photon. 4, 227–230 (2010).

    CAS 

    Google Scholar
     

  • Aspden, R. S. et al. Photon-sparse microscopy: seen gentle imaging utilizing infrared illumination. Optica 2, 1049 (2015).

    CAS 

    Google Scholar
     

  • Padgett, M. J. & Boyd, R. W. An introduction to ghost imaging: quantum and classical. Philos. Trans. R. Soc. A 375, 20160233 (2017).


    Google Scholar
     

  • Bennink, R. S., Bentley, S. J. & Boyd, R. W. “Two-photon” coincidence imaging with a classical supply. Phys. Rev. Lett. 89, 113601 (2002).

    PubMed 

    Google Scholar
     

  • Gatti, A., Brambilla, E., Bache, M. & Lugiato, L. A. Correlated imaging, quantum and classical. Phys. Rev. A 70, 013802 (2004).


    Google Scholar
     

  • Karmakar, S. & Shih, Y. Two-color ghost imaging with enhanced angular resolving energy. Phys. Rev. A 81, 033845 (2010).


    Google Scholar
     

  • Valencia, A., Scarcelli, G., D’Angelo, M. & Shih, Y. Two-photon imaging with thermal gentle. Phys. Rev. Lett. 94, 063601 (2005).

    PubMed 

    Google Scholar
     

  • Lopaeva, E. D. et al. Experimental realization of quantum illumination. Phys. Rev. Lett. 110, 153603 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Lemos, G. B. et al. Quantum imaging with undetected photons. Nature 512, 409–412 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Kviatkovsky, I., Chrzanowski, H. M., Avery, E. G., Bartolomaeus, H. & Ramelow, S. Microscopy with undetected photons within the mid-infrared. Sci. Adv. 6, eabd0264 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Walther, P. et al. De Broglie wavelength of a non-local four-photon state. Nature 429, 158–161 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Nagata, T., Okamoto, R., O’Brien, J. L., Sasaki, Okay. & Takeuchi, S. Beating the usual quantum restrict with four-entangled photons. Science 316, 726–729 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Dowling, J. P. Quantum optical metrology—the lowdown on high-N00N states. Contemp. Phys. 49, 125–143 (2008).

    CAS 

    Google Scholar
     

  • Ono, T., Okamoto, R. & Takeuchi, S. An entanglement-enhanced microscope. Nat. Commun. 4, 2426 (2013).

    PubMed 

    Google Scholar
     

  • Israel, Y., Rosen, S. & Silberberg, Y. Supersensitive polarization microscopy utilizing NOON states of sunshine. Phys. Rev. Lett. 112, 103604 (2014).

    PubMed 

    Google Scholar
     

  • Boto, A. N. et al. Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction restrict. Phys. Rev. Lett. 85, 2733–2736 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • Kok, P. et al. Quantum-interferometric optical lithography: in the direction of arbitrary two-dimensional patterns. Phys. Rev. A 63, 063407 (2001).


    Google Scholar
     

  • Barreiro, J. T., Langford, N. Okay., Peters, N. A. & Kwiat, P. G. Era of hyperentangled photon pairs. Phys. Rev. Lett. 95, 260501 (2005).

    PubMed 

    Google Scholar
     

  • Kwiat, P. G. Hyper-entangled states. J. Mod. Decide. 44, 2173–2184 (1997).


    Google Scholar
     

  • Zhang, Y. et al. Quantum imaging of organic organisms by way of spatial and polarization entanglement. Sci. Adv. 10, eadk1495 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Camphausen, R. et al. A quantum-enhanced wide-field section imager. Sci. Adv. 7, eabj2155 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Defienne, H., Ndagano, B., Lyons, A. & Faccio, D. Polarization entanglement-enabled quantum holography. Nat. Phys. 17, 591–597 (2021).

    CAS 

    Google Scholar
     

  • Aasi, J. et al. Enhanced sensitivity of the LIGO gravitational wave detector through the use of squeezed states of sunshine. Nat. Photon. 7, 613–619 (2013).

    CAS 

    Google Scholar
     

  • Casacio, C. A. et al. Quantum-enhanced nonlinear microscopy. Nature 594, 201–206 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Chu, X.-L., Götzinger, S. & Sandoghdar, V. A single molecule as a high-fidelity photon gun for producing intensity-squeezed gentle. Nat. Photon. 11, 58–62 (2017).

    CAS 

    Google Scholar
     

  • Lounis, B. & Orrit, M. Single-photon sources. Rep. Prog. Phys. 68, 1129–1179 (2005).

    CAS 

    Google Scholar
     

  • Loredo, J. C. et al. Scalable efficiency in solid-state single-photon sources. Optica 3, 433–440 (2016).


    Google Scholar
     

  • Mandel, L. & Wolf, E. Optical Coherence and Quantum Optics (Cambridge Univ. Press, 1995); https://doi.org/10.1017/CBO9781139644105

  • Steinhauer, S., Gyger, S. & Zwiller, V. Progress on large-scale superconducting nanowire single-photon detectors. Appl. Phys. Lett. 118, 100501 (2021).

    CAS 

    Google Scholar
     

  • Mueller, A. S. et al. Free-space coupled superconducting nanowire single-photon detector with low darkish counts. Optica 8, 1586–1587 (2021).


    Google Scholar
     

  • Harper, N. A. et al. Extremely environment friendly seen and near-IR photon pair era with thin-film lithium niobate. Decide. Quantum 2, 103–109 (2024).


    Google Scholar
     

  • Cortes, C. L., Adhikari, S., Ma, X. & Grey, S. Okay. Accelerating quantum optics experiments with statistical studying. Appl. Phys. Lett. 116, 184003 (2020).

    CAS 

    Google Scholar
     

  • Kudyshev, Z. A. et al. Machine studying assisted quantum super-resolution microscopy. Nat. Commun. 14, 4828 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Proppe, A. H. et al. Time-resolved line shapes of single quantum emitters through machine discovered photon correlations. Phys. Rev. Lett. 131, 053603 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Lavoie, J. et al. Part-modulated interferometry, spectroscopy, and refractometry utilizing entangled photon pairs. Adv. Quantum Technol. 3, 1900114 (2020).

    CAS 

    Google Scholar
     

  • Yin, L. et al. Evaluation of the spatial properties of correlated photon in collinear phase-matching. Photonics 8, 12 (2021).

    CAS 

    Google Scholar
     

  • Sansa Perna, A., Ortega, E., Gräfe, M. & Steinlechner, F. Seen-wavelength polarization-entangled photon supply for quantum communication and imaging. Appl. Phys. Lett. 120, 074001 (2022).

    CAS 

    Google Scholar
     

  • Lu, X. et al. Chip-integrated seen–telecom entangled photon pair supply for quantum communication. Nat. Phys. 15, 373–381 (2019).

    CAS 

    Google Scholar
     

  • Wang, H. et al. On-demand semiconductor supply of entangled photons which concurrently has excessive constancy, effectivity, and indistinguishability. Phys. Rev. Lett. 122, 113602 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Huber, D., Reindl, M., Aberl, J., Rastelli, A. & Trotta, R. Semiconductor quantum dots as a super supply of polarization-entangled photon pairs on-demand: a assessment. J. Decide. 20, 073002 (2018).


    Google Scholar
     

  • Kim, H., Park, H. S. & Choi, S.-Okay. Three-photon N00N states generated by photon subtraction from double photon pairs. Decide. Specific 17, 19720 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • Mitchell, M. W., Lundeen, J. S. & Steinberg, A. M. Tremendous-resolving section measurements with a multiphoton entangled state. Nature 429, 161–164 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Solar, F. W., Ou, Z. Y. & Guo, G. C. Projection measurement of the maximally entangled N-photon state for an illustration of the N-photon de Broglie wavelength. Phys. Rev. A 73, 023808 (2006).


    Google Scholar
     

  • Solar, F. W., Liu, B. H., Huang, Y. F., Ou, Z. Y. & Guo, G. C. Statement of the four-photon de Broglie wavelength by state-projection measurement. Phys. Rev. A 74, 033812 (2006).


    Google Scholar
     

  • Liu, B. H. et al. Demonstration of the three-photon de Broglie wavelength by projection measurement. Phys. Rev. A 77, 023815 (2008).


    Google Scholar
     

  • Resch, Okay. J. et al. Time-reversal and super-resolving section measurements. Phys. Rev. Lett. 98, 223601 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Afek, I., Ambar, O. & Silberberg, Y. Excessive-NOON states by mixing quantum and classical gentle. Science 328, 879–881 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Fuenzalida, J. et al. Decision of quantum imaging with undetected photons. Quantum 6, 646 (2022).


    Google Scholar
     

  • Viswanathan, B., Barreto Lemos, G. & Lahiri, M. Decision restrict in quantum imaging with undetected photons utilizing place correlations. Decide. Specific 29, 38185 (2021).

    PubMed 

    Google Scholar
     

  • Dorfman, Okay. E., Schlawin, F. & Mukamel, S. Nonlinear optical indicators and spectroscopy with quantum gentle. Rev. Mod. Phys. 88, 045008 (2016).


    Google Scholar
     

  • Ko, L., Prepare dinner, R. L. & Whaley, Okay. B. Dynamics of photosynthetic gentle harvesting methods interacting with N-photon Fock states. J. Chem. Phys. 156, 244108 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Roslyak, O., Marx, C. A. & Mukamel, S. Nonlinear spectroscopy with entangled photons: manipulating quantum pathways of matter. Phys. Rev. A 79, 033832 (2009).


    Google Scholar
     

  • Rodriguez-Camargo, C. D., Gestsson, H. O., Nation, C., Jones, A. R. & Olaya-Castro, A. Perturbation-theory method for predicting vibronic selectivity by entangled-photon-pair absorption. Phys. Rev. A 111, 063101 (2025).

    CAS 

    Google Scholar
     

  • Loudon, R. The Quantum Principle of Gentle (Oxford Univ. Press, 2000).

  • Fox, M. Quantum Optics: An Introduction (Oxford Univ. Press, 2006).

  • Feynman, R. P. & Hibbs, A. R. Quantum Mechanics and Path Integrals: Emended Version (Dover Publications, 2010).

  • Feynman, R. P., Leighton, R. B. & Sands, M. The Feynman Lectures on Physics Vol. 3 (Addison Wesley, 1971).

  • Hong, C. Okay., Ou, Z. Y. & Mandel, L. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044–2046 (1987).

    CAS 
    PubMed 

    Google Scholar
     

  • Berchera, I. R. & Degiovanni, I. P. Quantum imaging with sub-Poissonian gentle: challenges and views in optical metrology. Metrologia 56, 024001 (2019).

    CAS 

    Google Scholar
     

  • Hadfield, R. H. Single-photon detectors for optical quantum data functions. Nat. Photon. 3, 696–705 (2009).

    CAS 

    Google Scholar
     

  • McCaughan, A. N. Readout architectures for superconducting nanowire single photon detectors. Supercond. Sci. Technol. 31, 040501 (2018).


    Google Scholar
     

  • McCaughan, A. N. et al. The thermally-coupled imager: a scalable readout structure for superconducting nanowire single photon detectors. Appl. Phys. Lett. 121, 102602 (2022).

    CAS 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles