Spatiotemporal-adaptive nanotherapeutics promote post-injury regeneration in ageing by means of metabolic modulation


  • Sabine et al. Irritation and metabolism in tissue restore and regeneration. Science 356, 1026–1030 (2017).

    Article 

    Google Scholar
     

  • Rodríguez-Morales, P. & Franklin, R. A. Macrophage phenotypes and capabilities: resolving irritation and restoring homeostasis. Traits Immunol. 44, 986–998 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jones, D. L. & Wagers, A. J. No place like residence: anatomy and performance of the stem cell area of interest. Nat. Rev. Mol. Cell Biol. 9, 11–21 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Di Micco, R., Krizhanovsky, V., Baker, D., & d’Adda di Fagagna, F. Mobile senescence in ageing: from mechanisms to therapeutic alternatives. Nat. Rev. Mol. Cell Biol. 22, 75–95 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Ogrodnik, M. & Gladyshev, V. N. The which means of adaptation in growing old: insights from mobile senescence, epigenetic clocks and stem cell alterations. Nat. Growing old 3, 766–775 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hazeldine, J., Lord, J. M. & Hampson, P. Immunesenescence and inflammaging: a contributory issue within the poor final result of the geriatric trauma affected person. Ageing Res. Rev. 24, 349–357 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Wei, T. et al. Janus liposozyme for the modulation of redox and immune homeostasis in contaminated diabetic wounds. Nat. Nanotechnol. 19, 1–12 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Ambrosi, T. H. et al. Aged skeletal stem cells generate an inflammatory degenerative area of interest. Nature 597, 256–262 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lei, Q. et al. Extracellular vesicles deposit PCNA to rejuvenate aged bone marrow-derived mesenchymal stem cells and sluggish age-related degeneration. Sci. Transl. Med. 13, eaaz8697 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Villa, C. et al. Magnetic-field-driven concentrating on of exosomes modulates immune and metabolic modifications in dystrophic muscle. Nat. Nanotechnol. 19, 1532–1543 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Y. et al. Nutrient-delivery and metabolism reactivation remedy for melanoma. Nat. Nanotechnol. 19, 1399–1408 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Hu, X. et al. A man-made metabzyme for tumour-cell-specific metabolic remedy. Nat. Nanotechnol. 19, 1712–1722 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pålsson-McDermott, E. M. & O’Neill, L. A. J. Concentrating on immunometabolism as an anti-inflammatory technique. Cell Res. 30, 300–314 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cai, Y. et al. Decoding aging-dependent regenerative decline throughout tissues at single-cell decision. Cell Stem Cell 30, 1674–1691.e8 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Covarrubias, A. J., Perrone, R., Grozio, A. & Verdin, E. NAD+ metabolism and its roles in mobile processes throughout ageing. Nat. Rev. Mol. Cell Biol. 22, 119–141 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Verdin, E. NAD+ in growing old, metabolism, and neurodegeneration. Science 350, 1208–1213 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, H. et al. NAD+ repletion improves mitochondrial and stem cell perform and enhances life span in mice. Science 352, 1436–1443 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Minhas, P. S. et al. Macrophage de novo NAD+ synthesis specifies immune perform in growing old and irritation. Nat. Immunol. 20, 50–63 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yeung, F. et al. Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J. 23, 2369–2380 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Trammell, S. A. J. et al. Nicotinamide riboside is uniquely and orally bioavailable in mice and people. Nat. Commun. 7, 12948 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, Y. et al. Engineered drug-loaded mobile membrane nanovesicles for environment friendly remedy of postsurgical most cancers recurrence and metastasis. Sci. Adv. 8, eadd3599 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fang, R. H., Gao, W. & Zhang, L. Concentrating on medication to tumours utilizing cell membrane-coated nanoparticles. Nat. Rev. Clin. Oncol. 20, 33–48 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Liu, Y., Zhao, Y. & Chen, X. Bioengineering of metal-organic frameworks for nanomedicine. Theranostics 9, 3122–3133 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liang, Okay. et al. Biomimetic mineralization of metal-organic frameworks as protecting coatings for biomacromolecules. Nat. Commun. 6, 7240 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wynn, T. A. & Vannella, Okay. M. Macrophages in tissue restore, regeneration, and fibrosis. Immunity 44, 450–462 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Freemerman, A. J. et al. Metabolic reprogramming of macrophages: glucose transporter 1 (GLUT1)-mediated glucose metabolism drives a proinflammatory phenotype. J. Biol. Chem. 289, 7884–7896 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • O’Neill, L. A. J., Kishton, R. J. & Rathmell, J. A information to immunometabolism for immunologists. Nat. Rev. Immunol. 16, 553–565 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Runtsch, M. C. et al. Itaconate and itaconate derivatives goal JAK1 to suppress various activation of macrophages. Cell Metab. 34, 487–501.e8 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tannahill, G. M. et al. Succinate is an inflammatory sign that induces IL-1β by means of HIF-1α. Nature 496, 238–242 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan, J. & Horng, T. Lipid metabolism in regulation of macrophage capabilities. Traits Cell Biol. 30, 979–989 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Remmerie, A. & Scott, C. L. Macrophages and lipid metabolism. Cell Immunol. 330, 27–42 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Di Gioia, M. et al. Endogenous oxidized phospholipids reprogram mobile metabolism and enhance hyperinflammation. Nat. Immunol. 21, 42–53 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • O’Neill, L. A. J. & Hardie, D. G. Metabolism of irritation restricted by AMPK and pseudo-starvation. Nature 493, 346–355 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Vats, D. et al. Oxidative metabolism and PGC-1β attenuate macrophage-mediated irritation. Cell Metab. 4, 13–24 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of growing old. Cell 153, 1194–1217 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Andreux, P. A., Houtkooper, R. H. & Auwerx, J. Pharmacological approaches to revive mitochondrial perform. Nat. Rev. Drug Discov. 12, 465–483 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Solar, N. et al. Measuring in vivo mitophagy. Mol. Cell 60, 685–696 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan, C. et al. PHB2 (prohibitin 2) promotes PINK1-PRKN/Parkin-dependent mitophagy by the PARL-PGAM5-PINK1 axis. Autophagy 16, 419–434 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mouchiroud, L. et al. The NAD+/sirtuin pathway modulates longevity by means of activation of mitochondrial UPR and FOXO signaling. Cell 154, 430–441 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gaharwar, A. Okay., Singh, I. & Khademhosseini, A. Engineered biomaterials for in situ tissue regeneration. Nat. Rev. Mater. 5, 686–705 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Rodier, F. et al. Persistent DNA harm signalling triggers senescence-associated inflammatory cytokine secretion. Nat. Cell Biol. 11, 973–979 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lozano-Torres, B. et al. The chemistry of senescence. Nat. Rev. Chem. 3, 426–441 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Liang, Okay. et al. In situ biomimetic mineralization of bone-like hydroxyapatite in hydrogel for the acceleration of bone regeneration. ACS Appl. Mater. Interfaces 15, 292–308 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chao, Y., Chen, Q. & Liu, Z. Good injectable hydrogels for most cancers immunotherapy. Adv. Funct. Mater. 30, 1902785 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Lu, Y.-Z. et al. CGRP sensory neurons promote tissue therapeutic through neutrophils and macrophages. Nature 628, 604–611 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Calcinotto, A. et al. Mobile senescence: growing old, most cancers, and harm. Physiol. Rev. 99, 1047–1078 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao, C. et al. Remedy of atherosclerosis by macrophage-biomimetic nanoparticles through focused pharmacotherapy and sequestration of proinflammatory cytokines. Nat. Commun. 11, 2622 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fang, R. H. et al. Lipid-insertion permits concentrating on functionalization of erythrocyte membrane-cloaked nanoparticles. Nanoscale 5, 8884–8888 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kallai, I. et al. Microcomputed tomography–primarily based structural evaluation of varied bone tissue regeneration fashions. Nat. Protoc. 6, 105–110 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martino, M. M. et al. Progress components engineered for super-affinity to the extracellular matrix improve tissue therapeutic. Science 343, 885–888 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles