Environment friendly CO2-to-methanol electrocatalysis in acidic media by way of microenvironment-tuned cobalt phthalocyanine


  • Kibria, M. G. et al. Electrochemical CO2 discount into chemical feedstocks: from mechanistic electrocatalysis fashions to system design. Adv. Mater. 31, 201807166 (2019).

    Article 

    Google Scholar
     

  • Zhao, Q. et al. Selective etching quaternary MAX section towards single atom copper immobilized mxene (Ti3C2Clx) for environment friendly CO2 electroreduction to methanol. ACS Nano 15, 4927–4936 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Torbensen, Ok. et al. Molecular catalysts enhance the speed of electrolytic CO2 discount. ACS Power Lett. 5, 1512–1518 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Bonin, J., Maurin, A. & Robert, M. Molecular catalysis of the electrochemical and photochemical discount of CO2 with Fe and Co metal-based complexes. Latest advances. Coord. Chem. Rev. 334, 184–198 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Wu, Y., Jiang, Z., Lu, X., Liang, Y. & Wang, H. Domino electroreduction of CO2 to methanol on a molecular catalyst. Nature 575, 639–642 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Boutin, E. et al. Aqueous electrochemical discount of carbon dioxide and carbon monoxide into methanol with cobalt phthalocyanine. Angew. Chem. Int. Ed. 58, 16172–16176 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Rooney, C. L. et al. Energetic websites of cobalt phthalocyanine in electrocatalytic CO2 discount to methanol. Angew. Chem. Int. Ed. 63, e202310623 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Li, J. et al. Mechanism-guided realization of selective carbon monoxide electroreduction to methanol. Nat. Synth. 2, 1194–1201 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Boutin, E., Salamé, A., Merakeb, L., Chatterjee, T. & Robert, M. On the existence and function of formaldehyde throughout aqueous electrochemical discount of carbon monoxide to methanol by cobalt phthalocyanine. Chemistry 28, e202200697 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ren, X. et al. In-situ spectroscopic probe of the intrinsic construction characteristic of single-atom middle in electrochemical CO/CO2 discount to methanol. Nat. Commun. 14, 3401 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ding, J. et al. Atomic high-spin cobalt(II) middle for extremely selective electrochemical CO discount to CH3OH. Nat. Commun. 14, 6550 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Su, J. et al. Pressure enhances the exercise of molecular electrocatalysts by way of carbon nanotube helps. Nat. Catal. 6, 818–828 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Yao, L. et al. Unlocking the potential for methanol synthesis by way of electrochemical CO2 discount utilizing CoPc-based molecular catalysts. ACS Nano 18, 21623–21632 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheon, S., Li, J. & Wang, H. In situ generated CO permits high-current CO2 discount to methanol in a molecular catalyst layer. J. Am. Chem. Soc. 146, 16348–16354 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu, Q. et al. The solvation surroundings of molecularly dispersed cobalt phthalocyanine determines methanol selectivity throughout electrocatalytic CO2 discount. Nat. Catal. 7, 987–999 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Yu, S. et al. CO2-to-methanol electroconversion on a molecular cobalt catalyst facilitated by acidic cations. Nat. Catal. 7, 1000–1009 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Singh, A. et al. Molecular electrochemical catalysis of CO-to-formaldehyde conversion with a cobalt complicated. J. Am. Chem. Soc. 146, 22129–22133 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hutchison, P. et al. Proton-coupled electron switch mechanisms for CO2 discount to methanol catalyzed by surface-immobilized cobalt phthalocyanine. J. Am. Chem. Soc. 146, 20230–20240 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Erick Huang, J. et al. CO2 electrolysis to multicarbon merchandise in robust acid. Science 372, 1074–1078 (2021).

    Article 

    Google Scholar
     

  • Ma, Z. et al. CO2 electroreduction to multicarbon merchandise in strongly acidic electrolyte by way of synergistically modulating the native microenvironment. Nat. Commun. 13, 7596 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gu, J. et al. Modulating electrical subject distribution by alkali cations for CO2 electroreduction in strongly acidic medium. Nat. Catal. 5, 268–276 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Monteiro, M. C. O. et al. The function of cation acidity on the competitors between hydrogen evolution and CO2 discount on gold electrodes. J. Am. Chem. Soc. 144, 1589–1602 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, X. et al. Electrochemical CO2-to-ethylene conversion on polyamine-incorporated Cu electrodes. Nat. Catal. 4, 20–27 (2021).

    Article 

    Google Scholar
     

  • Solar, M., Cheng, J. & Yamauchi, M. Gasoline diffusion enhanced electrode with ultrathin superhydrophobic macropore construction for acidic CO2 electroreduction. Nat. Commun. 15, 491 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xing, Z., Hu, X. & Feng, X. Tuning the microenvironment in gas-diffusion electrodes permits high-rate CO2 electrolysis to formate. ACS Power Lett. 6, 1694–1702 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Feng, S. et al. Stabilizing *CO2 intermediates on the acidic interface utilizing molecularly dispersed cobalt phthalocyanine as catalysts for CO2 discount. Angew. Chem. Int. Ed. 136, e202317942 (2024).

    Article 

    Google Scholar
     

  • Fan, M. et al. Cationic-group-functionalized electrocatalysts allow secure acidic CO2 electrolysis. Nat. Catal. 6, 763–772 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Li, G. et al. Spine engineering of polymeric catalysts for high-performance CO2 discount in bipolar membrane zero-gap electrolyzer. Angew. Chem. Int. Ed. 63, e202400414 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, Q. et al. A covalent molecular design enabling environment friendly CO2 discount in robust acids. Nat. Synth. 3, 1231–1242 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Music, Y. et al. Atomically skinny, ionic-covalent natural nanosheets for secure, excessive efficiency carbon dioxide electroreduction. Adv. Mater. 34, 2110496 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Music, Y. et al. Ultrathin, cationic covalent natural nanosheets for enhanced CO2 electroreduction to methanol. Adv. Mater. 36, 2310037 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Yao, Y., Delmo, E. P. & Shao, M. The electrode/electrolyte interface research through the electrochemical CO2 discount in acidic electrolytes. Angew. Chem. Int. Ed. 64, e202415894 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Bernasconi, F. et al. Operando commentary of (bi)carbonate precipitation throughout electrochemical CO2 discount in strongly acidic electrolytes. ACS Catal. 14, 8232–8237 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Su, Y. et al. Exploring the influence of Nafion modifier on electrocatalytic CO2 discount over Cu catalyst. J. Power Chem. 88, 543–551 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Y. H. et al. In situ Raman spectroscopy reveals the construction and dissociation of interfacial water. Nature 600, 81–85 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, C. Y. et al. In situ probing electrified interfacial water constructions at atomically flat surfaces. Nat. Mater. 18, 697–701 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, B. et al. Cation-dependent interfacial constructions and kinetics for outer-sphere electron-transfer reactions. J. Phys. Chem. C 125, 4397–4411 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Y. et al. Robust hydrogen-bonded interfacial water inhibiting hydrogen evolution kinetics to advertise electrochemical CO2 discount to C2+. ACS Catal. 14, 3457–3465 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Ohlin, C. A., Dyson, P. J. & Laurenczy, G. Carbon monoxide solubility in ionic liquids: dedication, prediction and relevance to hydroformylation. Chem. Commun. 4, 1070–1071 (2004).

    Article 

    Google Scholar
     

  • Yao, Y. et al. A floor technique boosting the ethylene selectivity for CO2 discount and in situ mechanistic insights. Nat. Commun. 15, 1257 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, S., Jiang, B., Cai, W., Bin & Shao, M. Direct commentary on response intermediates and the function of bicarbonate anions in CO2 electrochemical discount response on Cu surfaces. J. Am. Chem. Soc. 139, 15664–15667 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, H., Zhu, J., Ren, X., Tong, Y. & Chen, P. Heterogeneous cobalt phthalocyanine/sulfur-modified hole carbon sphere for enhancing CO2 electroreduction and Zn-CO2 batteries. Adv. Funct. Mater. 34, 202312552 (2023).


    Google Scholar
     

  • Lyu, F. et al. Pre-activation of CO2 at cobalt phthalocyanine-Mg(OH)2 interface for enhanced turnover charge. Adv. Funct. Mater. 33, 2214609 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Have, I. C. T. et al. Uncovering the response mechanism behind CoO as lively section for CO2 hydrogenation. Nat. Commun. 13, 324 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wohar, M. M. & Jagodzinski, P. W. Infrared spectra of H2CO, H213CO, D2CO, and D213CO and anomalous values in vibrational power fields. J. Mol. Spectrosc. 148, 13–19 (1991).

    Article 
    CAS 

    Google Scholar
     

  • Monteiro, M. C. O., Jacobse, L. & Koper, M. T. M. Understanding the voltammetry of bulk CO electrooxidation in impartial media by mixed SECM measurements. J. Phys. Chem. Lett. 11, 9708–9713 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Watkins, N. B. et al. Hydrodynamics change Tafel slopes in electrochemical CO2 discount on copper. ACS Power Lett. 8, 2185–2192 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Latiff, N. M. et al. Carbon based mostly copper(II) phthalocyanine catalysts for electrochemical CO2 discount: impact of carbon assist on electrocatalytic exercise. Carbon 168, 245–253 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, X. et al. Extremely selective and lively CO2 discount electrocatalysts based mostly on cobalt phthalocyanine/carbon nanotube hybrid constructions. Nat. Commun. 8, 14675 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thompson, A. P. et al. LAMMPS—a versatile simulation software for particle-based supplies modeling on the atomic, meso, and continuum scales. Comput. Phys. Commun. 271, 108171 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Cundary, T. R. & Gordon, M. S. UFF, a full periodic desk power subject for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 114, 10024–10035 (1992).

    Article 

    Google Scholar
     

  • Rappe, A. Ok. & Goddard, W. A. III Cost equilibration for molecular dynamics simulations. J. Phys. Chem. 95, 3358–3363 (1991).

    Article 
    CAS 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles