Kibria, M. G. et al. Electrochemical CO2 discount into chemical feedstocks: from mechanistic electrocatalysis fashions to system design. Adv. Mater. 31, 201807166 (2019).
Zhao, Q. et al. Selective etching quaternary MAX section towards single atom copper immobilized mxene (Ti3C2Clx) for environment friendly CO2 electroreduction to methanol. ACS Nano 15, 4927–4936 (2021).
Torbensen, Ok. et al. Molecular catalysts enhance the speed of electrolytic CO2 discount. ACS Power Lett. 5, 1512–1518 (2020).
Bonin, J., Maurin, A. & Robert, M. Molecular catalysis of the electrochemical and photochemical discount of CO2 with Fe and Co metal-based complexes. Latest advances. Coord. Chem. Rev. 334, 184–198 (2017).
Wu, Y., Jiang, Z., Lu, X., Liang, Y. & Wang, H. Domino electroreduction of CO2 to methanol on a molecular catalyst. Nature 575, 639–642 (2019).
Boutin, E. et al. Aqueous electrochemical discount of carbon dioxide and carbon monoxide into methanol with cobalt phthalocyanine. Angew. Chem. Int. Ed. 58, 16172–16176 (2019).
Rooney, C. L. et al. Energetic websites of cobalt phthalocyanine in electrocatalytic CO2 discount to methanol. Angew. Chem. Int. Ed. 63, e202310623 (2024).
Li, J. et al. Mechanism-guided realization of selective carbon monoxide electroreduction to methanol. Nat. Synth. 2, 1194–1201 (2023).
Boutin, E., Salamé, A., Merakeb, L., Chatterjee, T. & Robert, M. On the existence and function of formaldehyde throughout aqueous electrochemical discount of carbon monoxide to methanol by cobalt phthalocyanine. Chemistry 28, e202200697 (2022).
Ren, X. et al. In-situ spectroscopic probe of the intrinsic construction characteristic of single-atom middle in electrochemical CO/CO2 discount to methanol. Nat. Commun. 14, 3401 (2023).
Ding, J. et al. Atomic high-spin cobalt(II) middle for extremely selective electrochemical CO discount to CH3OH. Nat. Commun. 14, 6550 (2023).
Su, J. et al. Pressure enhances the exercise of molecular electrocatalysts by way of carbon nanotube helps. Nat. Catal. 6, 818–828 (2023).
Yao, L. et al. Unlocking the potential for methanol synthesis by way of electrochemical CO2 discount utilizing CoPc-based molecular catalysts. ACS Nano 18, 21623–21632 (2024).
Cheon, S., Li, J. & Wang, H. In situ generated CO permits high-current CO2 discount to methanol in a molecular catalyst layer. J. Am. Chem. Soc. 146, 16348–16354 (2024).
Zhu, Q. et al. The solvation surroundings of molecularly dispersed cobalt phthalocyanine determines methanol selectivity throughout electrocatalytic CO2 discount. Nat. Catal. 7, 987–999 (2024).
Yu, S. et al. CO2-to-methanol electroconversion on a molecular cobalt catalyst facilitated by acidic cations. Nat. Catal. 7, 1000–1009 (2024).
Singh, A. et al. Molecular electrochemical catalysis of CO-to-formaldehyde conversion with a cobalt complicated. J. Am. Chem. Soc. 146, 22129–22133 (2024).
Hutchison, P. et al. Proton-coupled electron switch mechanisms for CO2 discount to methanol catalyzed by surface-immobilized cobalt phthalocyanine. J. Am. Chem. Soc. 146, 20230–20240 (2024).
Erick Huang, J. et al. CO2 electrolysis to multicarbon merchandise in robust acid. Science 372, 1074–1078 (2021).
Ma, Z. et al. CO2 electroreduction to multicarbon merchandise in strongly acidic electrolyte by way of synergistically modulating the native microenvironment. Nat. Commun. 13, 7596 (2022).
Gu, J. et al. Modulating electrical subject distribution by alkali cations for CO2 electroreduction in strongly acidic medium. Nat. Catal. 5, 268–276 (2022).
Monteiro, M. C. O. et al. The function of cation acidity on the competitors between hydrogen evolution and CO2 discount on gold electrodes. J. Am. Chem. Soc. 144, 1589–1602 (2022).
Chen, X. et al. Electrochemical CO2-to-ethylene conversion on polyamine-incorporated Cu electrodes. Nat. Catal. 4, 20–27 (2021).
Solar, M., Cheng, J. & Yamauchi, M. Gasoline diffusion enhanced electrode with ultrathin superhydrophobic macropore construction for acidic CO2 electroreduction. Nat. Commun. 15, 491 (2024).
Xing, Z., Hu, X. & Feng, X. Tuning the microenvironment in gas-diffusion electrodes permits high-rate CO2 electrolysis to formate. ACS Power Lett. 6, 1694–1702 (2021).
Feng, S. et al. Stabilizing *CO2 intermediates on the acidic interface utilizing molecularly dispersed cobalt phthalocyanine as catalysts for CO2 discount. Angew. Chem. Int. Ed. 136, e202317942 (2024).
Fan, M. et al. Cationic-group-functionalized electrocatalysts allow secure acidic CO2 electrolysis. Nat. Catal. 6, 763–772 (2023).
Li, G. et al. Spine engineering of polymeric catalysts for high-performance CO2 discount in bipolar membrane zero-gap electrolyzer. Angew. Chem. Int. Ed. 63, e202400414 (2024).
Zhang, Q. et al. A covalent molecular design enabling environment friendly CO2 discount in robust acids. Nat. Synth. 3, 1231–1242 (2024).
Music, Y. et al. Atomically skinny, ionic-covalent natural nanosheets for secure, excessive efficiency carbon dioxide electroreduction. Adv. Mater. 34, 2110496 (2022).
Music, Y. et al. Ultrathin, cationic covalent natural nanosheets for enhanced CO2 electroreduction to methanol. Adv. Mater. 36, 2310037 (2024).
Yao, Y., Delmo, E. P. & Shao, M. The electrode/electrolyte interface research through the electrochemical CO2 discount in acidic electrolytes. Angew. Chem. Int. Ed. 64, e202415894 (2025).
Bernasconi, F. et al. Operando commentary of (bi)carbonate precipitation throughout electrochemical CO2 discount in strongly acidic electrolytes. ACS Catal. 14, 8232–8237 (2024).
Su, Y. et al. Exploring the influence of Nafion modifier on electrocatalytic CO2 discount over Cu catalyst. J. Power Chem. 88, 543–551 (2024).
Wang, Y. H. et al. In situ Raman spectroscopy reveals the construction and dissociation of interfacial water. Nature 600, 81–85 (2021).
Li, C. Y. et al. In situ probing electrified interfacial water constructions at atomically flat surfaces. Nat. Mater. 18, 697–701 (2019).
Huang, B. et al. Cation-dependent interfacial constructions and kinetics for outer-sphere electron-transfer reactions. J. Phys. Chem. C 125, 4397–4411 (2021).
Wang, Y. et al. Robust hydrogen-bonded interfacial water inhibiting hydrogen evolution kinetics to advertise electrochemical CO2 discount to C2+. ACS Catal. 14, 3457–3465 (2024).
Ohlin, C. A., Dyson, P. J. & Laurenczy, G. Carbon monoxide solubility in ionic liquids: dedication, prediction and relevance to hydroformylation. Chem. Commun. 4, 1070–1071 (2004).
Yao, Y. et al. A floor technique boosting the ethylene selectivity for CO2 discount and in situ mechanistic insights. Nat. Commun. 15, 1257 (2024).
Zhu, S., Jiang, B., Cai, W., Bin & Shao, M. Direct commentary on response intermediates and the function of bicarbonate anions in CO2 electrochemical discount response on Cu surfaces. J. Am. Chem. Soc. 139, 15664–15667 (2017).
Wang, H., Zhu, J., Ren, X., Tong, Y. & Chen, P. Heterogeneous cobalt phthalocyanine/sulfur-modified hole carbon sphere for enhancing CO2 electroreduction and Zn-CO2 batteries. Adv. Funct. Mater. 34, 202312552 (2023).
Lyu, F. et al. Pre-activation of CO2 at cobalt phthalocyanine-Mg(OH)2 interface for enhanced turnover charge. Adv. Funct. Mater. 33, 2214609 (2023).
Have, I. C. T. et al. Uncovering the response mechanism behind CoO as lively section for CO2 hydrogenation. Nat. Commun. 13, 324 (2022).
Wohar, M. M. & Jagodzinski, P. W. Infrared spectra of H2CO, H213CO, D2CO, and D213CO and anomalous values in vibrational power fields. J. Mol. Spectrosc. 148, 13–19 (1991).
Monteiro, M. C. O., Jacobse, L. & Koper, M. T. M. Understanding the voltammetry of bulk CO electrooxidation in impartial media by mixed SECM measurements. J. Phys. Chem. Lett. 11, 9708–9713 (2020).
Watkins, N. B. et al. Hydrodynamics change Tafel slopes in electrochemical CO2 discount on copper. ACS Power Lett. 8, 2185–2192 (2023).
Latiff, N. M. et al. Carbon based mostly copper(II) phthalocyanine catalysts for electrochemical CO2 discount: impact of carbon assist on electrocatalytic exercise. Carbon 168, 245–253 (2020).
Zhang, X. et al. Extremely selective and lively CO2 discount electrocatalysts based mostly on cobalt phthalocyanine/carbon nanotube hybrid constructions. Nat. Commun. 8, 14675 (2017).
Thompson, A. P. et al. LAMMPS—a versatile simulation software for particle-based supplies modeling on the atomic, meso, and continuum scales. Comput. Phys. Commun. 271, 108171 (2022).
Cundary, T. R. & Gordon, M. S. UFF, a full periodic desk power subject for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 114, 10024–10035 (1992).
Rappe, A. Ok. & Goddard, W. A. III Cost equilibration for molecular dynamics simulations. J. Phys. Chem. 95, 3358–3363 (1991).
