In the direction of Floquet Chern insulators of sunshine


  • Thompson, R. J., Rempe, G. & Kimble, H. J. Commentary of normal-mode splitting for an atom in an optical cavity. Phys. Rev. Lett. 68, 1132–1135 (1992).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Chang, D. E., Douglas, J. S., González-Tudela, A., Hung, C.-L. & Kimble, H. J. Colloquium: Quantum matter constructed from nanoscopic lattices of atoms and photons. Rev. Trendy Phys. 90, 031002 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Douglas, J. S. et al. Quantum many-body fashions with chilly atoms coupled to photonic crystals. Nat. Photonics 9, 326–331 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, L., Gogna, R., Burg, W., Tutuc, E. & Deng, H. Photonic-crystal exciton-polaritons in monolayer semiconductors. Nat. Commun. 9, 713 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deng, H., Haug, H. & Yamamoto, Y. Exciton-polariton Bose–Einstein condensation. Rev. Mod. Phys. 82, 1489–1537 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Faust, W. L. & Henry, C. H. Mixing of seen and near-resonance infrared gentle in hole. Phys. Rev. Lett. 17, 1265–1268 (1966).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, J., Zhang, L. & Xu, W. Floor plasmon polaritons: physics and purposes. J. Phys. D 45, 113001 (2012).

    Article 

    Google Scholar
     

  • Camley, R. E. & Mills, D. L. Floor polaritons on uniaxial antiferromagnets. Phys. Rev. B 26, 1280–1287 (1982).

    Article 
    CAS 

    Google Scholar
     

  • Basov, D. N., Fogler, M. M. & García de Abajo, F. J. Polaritons in van der Waals supplies. Science 354, aag1992 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Dittrich, T. et al. Quantum Transport and Dissipation vol. 3 (Wiley, 1998).

  • Xu, J. et al. Floquet cavity electromagnonics. Phys. Rev. Lett. 125, 237201 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Guo, X., Zou, C.-L., Jung, H. & Tang, H. X. On-chip sturdy coupling and environment friendly frequency conversion between telecom and visual optical modes. Phys. Rev. Lett. 117, 123902 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Dobrindt, J. M., Wilson-Rae, I. & Kippenberg, T. J. Parametric normal-mode splitting in cavity optomechanics. Phys. Rev. Lett. 101, 263602 (2008).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Li, M. et al. Experimental statement of topological z2 exciton-polaritons in transition metallic dichalcogenide monolayers. Nat. Commun. 12, 4425 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Guddala, S. et al. Topological phonon-polariton funneling in midinfrared metasurfaces. Science 374, 225–227 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • He, L., Wu, J., Jin, J., Mele, E. J. & Zhen, B. Polaritonic Chern insulators in monolayer semiconductors. Phys. Rev. Lett. 130, 043801 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Rudner, M. S. & Lindner, N. H. Band construction engineering and non-equilibrium dynamics in Floquet topological insulators. Nat. Rev. Phys. 2, 229–244 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Fang, Ok. & Wang, Y. Anomalous quantum Corridor impact of sunshine in Bloch-wave modulated photonic crystals. Phys. Rev. Lett. 122, 233904 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Rechtsman, M. C. et al. Photonic floquet topological insulators. Nature 496, 196–200 (2013).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Lu, J., He, L., Addison, Z., Mele, E. J. & Zhen, B. Floquet topological phases in one-dimensional nonlinear photonic crystals. Phys. Rev. Lett. 126, 113901 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhu, W., Xue, H., Gong, J., Chong, Y. & Zhang, B. Time-periodic nook states from Floquet higher-order topology. Nat. Commun. 13, 11 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wang, Y. H., Steinberg, H., Jarillo-Herrero, P. & Gedik, N. Commentary of Floquet–Bloch states on the floor of a topological insulator. Science 342, 453–457 (2013).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • McIver, J. W. et al. Mild-induced anomalous Corridor impact in graphene. Nat. Phys. 16, 38–41 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ito, S. et al. Construct-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature https://doi.org/10.1038/s41586-023-05850-x (2023).

  • Winn, J. N., Fan, S., Joannopoulos, J. D. & Ippen, E. P. Interband transitions in photonic crystals. Phys. Rev. B 59, 1551–1554 (1999).

    Article 
    CAS 

    Google Scholar
     

  • He, L. et al. Floquet Chern insulators of sunshine. Nat. Commun. 10, 4194 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haldane, F. D. M. Mannequin for a quantum Corridor impact with out Landau ranges: condensed-matter realization of the ‘parity anomaly’. Phys. Rev. Lett. 61, 2015 (1988).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Jin, J., He, L., Lu, J., Mele, E. J. & Zhen, B. Floquet quadrupole photonic crystals protected by space-time symmetry. Phys. Rev. Lett. 129, 063902 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Suh, W., Wang, Z. & Fan, S. Temporal coupled-mode concept and the presence of non-orthogonal modes in lossless multimode cavities. IEEE J. Quant. Electron. 40, 1511–1518 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Gorlach, M. A. et al. Far-field probing of leaky topological states in all-dielectric metasurfaces. Nat. Commun. 9, 909 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peng, B., Özdemir, Ş. Ok., Chen, W., Nori, F. & Yang, L. What’s and what’s not electromagnetically induced transparency in whispering-gallery microcavities. Nat. Commun. 5, 5082 (2014).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Reithmaier, J. P. et al. Sturdy coupling in a single quantum dot–semiconductor microcavity system. Nature 432, 197–200 (2004).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Berman, P. R. Cavity Quantum Electrodynamics (Educational Press, 1994).

  • Thiel, L. et al. Wafer-scale fabrication of ingap-on-insulator for nonlinear and quantum photonic purposes. Appl. Phys. Lett. 125, 131102 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Ma, R. et al. A dissipatively stabilized Mott insulator of photons. Nature 566, 51–57 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Clark, L. W., Schine, N., Baum, C., Jia, N. & Simon, J. Commentary of Laughlin states made of sunshine. Nature 582, 41–45 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wang, C. et al. Realization of fractional quantum Corridor state with interacting photons. Science 384, 579–584 (2024).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Peano, V., Houde, M., Marquardt, F. & Clerk, A. A. Topological quantum fluctuations and touring wave amplifiers. Phys. Rev. X 6, 041026 (2016).


    Google Scholar
     

  • Chang, L. et al. Sturdy frequency conversion in heterogeneously built-in GaAs resonators. APL Photonics 4, 036103 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Chang, L. et al. Extremely-efficient frequency comb era in AlGaAs-on-insulator microresonators. Nat. Commun. 11, 1331 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhu, D. et al. Built-in photonics on thin-film lithium niobate. Adv. Optics Photonics 13, 242–352 (2021).

    Article 

    Google Scholar
     

  • Sanz-Arranz, A., Manrique-Martinez, J. A., Medina-Garcia, J. & Rull-Perez, F. Amorphous zinc borate as a easy normal for baseline correction in Raman spectra: amorphous zinc borate as Raman normal. J. Raman Spectrosc. 48, 1644–1653 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Massie, C., Chen, Ok. & Berger, A. J. Calibration approach for suppressing residual etalon artifacts in slit-averaged Raman spectroscopy. Appl. Spectrosc. 76, 255–261 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles