Akinc A, Maier MA, Manoharan M, Fitzgerald Ok, Jayaraman M, Barros S, Ansell S, Du X, Hope MJ, Madden TD, Mui BL, Semple SC, Tam YK, Ciufolini M, Witzigmann D, Kulkarni JA, van der Meel R, Cullis PR. The onpattro story and the medical translation of nanomedicines containing nucleic acid-based medicine. Nat Nanotechnol. 2019;14(12):1084–7. https://doi.org/10.1038/s41565-019-0591-y.
Meikle TG, Dharmadana D, Hoffmann SV, Jones NC, Drummond CJ, Conn CE. Evaluation of the construction, loading and exercise of six antimicrobial peptides encapsulated in cubic section lipid nanoparticles. J Colloid Interface Sci. 2021;587:90–100. https://doi.org/10.1016/j.jcis.2020.11.124.
Ryan S, Shortall Ok, Dully M, Djehedar A, Murray D, Butler J, Neilan J, Soulimane T, Hudson SP. Lengthy performing injectables for therapeutic proteins. Colloids Surf B Biointerfaces. 2022;217:112644. https://doi.org/10.1016/j.colsurfb.2022.112644.
van t’ Hag L, Gras SL, Conn CE, Drummond CJ. Lyotropic liquid crystal engineering transferring past binary compositional house—ordered nanostructured amphiphile self-assembly supplies by design. Chem Soc Rev. 2017;46(10):2705–31. https://doi.org/10.1039/C6CS00663A.
Zhen G, Hinton TM, Muir BW, Shi S, Tizard M, McLean KM, Hartley PG, Gunatillake P. Glycerol monooleate-based nanocarriers for SiRNA supply in vitro. Mol Pharm. 2012;9(9):2450–7. https://doi.org/10.1021/mp200662f.
Gao Z, Jing B, Wang Y, Wan W, Dong X, Liu Y. Exploring the impression of lipid nanoparticles on protein stability and mobile proteostasis. J Colloid Interface Sci. 2025;678:656–65. https://doi.org/10.1016/j.jcis.2024.08.146.
Viegas C, Seck F, Fonte P. An perception on lipid nanoparticles for therapeutic proteins supply. J Drug Deliv Sci Technol. 2022. https://doi.org/10.1016/j.jddst.2022.103839.
Dan N, Safran SA. Impact of lipid traits on the construction of transmembrane proteins. Biophys J. 1998;75(3):1410–4. https://doi.org/10.1016/S0006-3495(98)74059-7.
Almsherqi ZA, Landh T, Kohlwein SD, Deng Y. Cubic membranes: the lacking dimension of cell membrane group. Int Rev Cell Mol Biol. 2009;274:275–342. https://doi.org/10.1016/S1937-6448(08)02006-6.
Kulkarni CV, Wachter W, Iglesias-Salto G, Engelskirchen S, Ahualli S. Monoolein: a magic lipid? Phys Chem Chem Phys. 2011;13(8):3004–21. https://doi.org/10.1039/c0cp01539c.
Zhai J, Fong C, Tran N, Drummond CJ. Non-lamellar lyotropic liquid crystalline lipid nanoparticles for the following era of nanomedicine. ACS Nano. 2019;13(6):6178–206. https://doi.org/10.1021/acsnano.8b07961.
Zhai J, Hinton TM, Waddington LJ, Fong C, Tran N, Mulet X, Drummond CJ, Muir BW. Lipid-PEG conjugates sterically stabilize and cut back the toxicity of phytantriol-based lyotropic liquid crystalline nanoparticles. Langmuir. 2015;31(39):10871–80. https://doi.org/10.1021/acs.langmuir.5b02797.
Larsson Ok, Tiberg F. Periodic minimal floor buildings in bicontinuous lipid-water phases and nanoparticles. Curr Opin Colloid Interface Sci. 2005;9(6):365–9. https://doi.org/10.1016/j.cocis.2004.12.002.
Narayanan T, Konovalov O. Synchrotron scattering strategies for nanomaterials and delicate matter analysis. Supplies. 2020. https://doi.org/10.3390/ma13030752.
Caffrey M, Cherezov V. Crystallizing membrane proteins utilizing lipidic mesophases. Nat Protoc. 2009;4(5):706–31. https://doi.org/10.1038/nprot.2009.31.
Landau EM, Jurg J, Rosenbusch P, Kaback HR. Lipidic cubic phases: a novel idea for the crystallization of membrane proteins (bacteriorhodopsin structurebicontinuous phaseslipidic matricesx-ray crystallography). Biophysics. 1996;93:14532–5. https://doi.org/10.1073/pnas.93.25.14532.
Katona G, Andréasson U, Landau EM, Andréasson L-E, Neutze R. Lipidic cubic section crystal construction of the photosynthetic response centre from Rhodobacter sphaeroides at 2.35Å decision. J Mol Biol. 2003;331(3):681–92. https://doi.org/10.1016/S0022-2836(03)00751-4.
Li D, Caffrey M. Lipid cubic section as a membrane mimetic for integral membrane protein enzymes. Proc Natl Acad Sci. 2011;108(21):8639–44. https://doi.org/10.1073/pnas.1101815108.
Lyons JA, Aragão D, Slattery O, Pisliakov AV, Soulimane T, Caffrey M. structural insights into electron switch in Caa3-type cytochrome oxidase. Nature. 2012;487(7408):514–8. https://doi.org/10.1038/nature11182.
Tiefenbrunn T, Liu W, Chen Y, Katritch V, Stout CD, Price JA, Cherezov V. Excessive decision construction of the Ba3 cytochrome c oxidase from thermus thermophilus in a lipidic setting. PLoS ONE. 2011;6(7): e22348.
Nazaruk E, Bilewicz R. Catalytic exercise of oxidases hosted in lipidic cubic phases on electrodes. Bioelectrochemistry. 2007. https://doi.org/10.1016/j.bioelechem.2006.12.007.
Nazaruk E, Landau EM, Bilewicz R. Membrane certain enzyme hosted in liquid crystalline cubic section for sensing and gasoline cells. Electrochim Acta. 2014;140:96–100. https://doi.org/10.1016/j.electacta.2014.05.130.
Zatloukalova M, Nazaruk E, Bilewicz R. Electrogenic transport of Na+/Ok+-ATPase integrated in lipidic cubic phases as a mannequin biomimetic membrane. Electrochim Acta. 2019;310:113–21. https://doi.org/10.1016/J.ELECTACTA.2019.04.082.
Zabara A, Negrini R, Baumann P, Onaca-Fischer O, Mezzenga R. Reconstitution of OmpF membrane protein on bended lipid bilayers: perforated hexagonal mesophases. Chem Commun. 2014;50(20):2642–5. https://doi.org/10.1039/C3CC49590F.
Zabara A, Negrini R, Onaca-Fischer O, Mezzenga R. Perforated bicontinuous cubic phases with PH-responsive topological channel interconnectivity. Small. 2013;9(21):3602–9. https://doi.org/10.1002/smll.201300348.
Speziale C, Salvati Manni L, Manatschal C, Landau EM, Mezzenga R. A macroscopic H+ and Cl- Ions pump by way of reconstitution of EcClC membrane proteins in lipidic cubic mesophases. Proc Natl Acad Sci U S A. 2016;113(27):7491–6. https://doi.org/10.1073/pnas.1603965113.
Miszta P, Nazaruk E, Nieciecka D, Możajew M, Krysiński P, Bilewicz R, Filipek S. The EcCLC antiporter embedded in lipidic liquid crystalline films-molecular dynamics simulations and electrochemical strategies. Phys Chem Chem Phys. 2022;24(5):3066–77. https://doi.org/10.1039/d1cp03992j.
Nimigean CM. A radioactive uptake assay to measure ion transport throughout ion channel-containing liposomes. Nat Protoc. 2006;1(3):1207–12. https://doi.org/10.1038/nprot.2006.166.
Syeda R, Santos JS, Montal M, Bayley H. Tetrameric meeting of KvLm Ok+ channels with outlined numbers of voltage sensors. Proc Natl Acad Sci. 2012;109(42):16917–22. https://doi.org/10.1073/pnas.1205592109.
Wakaskar RR. Basic overview of lipid-polymer hybrid nanoparticles, dendrimers, micelles, liposomes spongosomes and cubosomes. J Drug Goal. 2018;26(4):311–8. https://doi.org/10.1080/1061186X.2017.1367006.
Angelova A, Angelov B, Papahadjopoulos-Sternberg B, Ollivon M, Bourgaux C. Proteocubosomes: nanoporous automobiles with tertiary organized fluid interfaces. Langmuir. 2005;21(9):4138–43. https://doi.org/10.1021/la047745t.
Boge L, Bysell H, Ringstad L, Wennman D, Umerska A, Cassisa V, Eriksson J, Joly-Guillou M-L, Edwards Ok, Andersson M. Lipid-based liquid crystals as carriers for antimicrobial peptides: section habits and antimicrobial impact. Langmuir. 2016;32(17):4217–28. https://doi.org/10.1021/acs.langmuir.6b00338.
Angelova A, Garamus VM, Angelov B, Tian Z, Li Y, Zou A. Advances in structural design of lipid-based nanoparticle carriers for supply of macromolecular medicine, phytochemicals and anti-tumor brokers. Adv Colloid Interface Sci. 2017;249:331–45. https://doi.org/10.1016/j.cis.2017.04.006.
Azhari H, Strauss M, Hook S, Boyd BJ, Rizwan SB. Stabilising cubosomes with Tween 80 as a step in the direction of concentrating on lipid nanocarriers to the blood-brain barrier. Eur J Pharm Biopharm. 2016;104:148–55. https://doi.org/10.1016/j.ejpb.2016.05.001.
Rizwan SB, Assmus D, Boehnke A, Hanley T, Boyd BJ, Rades T, Hook S. Preparation of phytantriol cubosomes by solvent precursor dilution for the supply of protein vaccines. Eur J Pharm Biopharm. 2011;79(1):15–22. https://doi.org/10.1016/J.EJPB.2010.12.034.
Li D, Caffrey M. Construction and practical characterization of membrane integral proteins within the lipid cubic section. J Mol Biol. 2020;432(18):5104–23. https://doi.org/10.1016/j.jmb.2020.02.024.
Yaghmur A, Mu H. Latest advances in drug supply functions of cubosomes, hexosomes, and stable lipid nanoparticles. Acta Pharm Sin B. 2021;11(4):871–85. https://doi.org/10.1016/j.apsb.2021.02.013.
Angelova A, Drechsler M, Garamus VM, Angelov B. Liquid crystalline nanostructures as PEGylated reservoirs of Omega-3 polyunsaturated fatty acids: structural insights towards supply formulations in opposition to neurodegenerative problems. ACS Omega. 2018;3(3):3235–47. https://doi.org/10.1021/acsomega.7b01935.
Yu Helvig S, Woythe L, Pham S, Bor G, Andersen H, Moein Moghimi S, Yaghmur A. A structurally numerous library of glycerol monooleate/oleic acid non-lamellar liquid crystalline nanodispersions stabilized with nonionic methoxypoly(ethylene glycol) (MPEG)-lipids exhibiting variable complement activation properties. J Colloid Interface Sci. 2021;582:906–17. https://doi.org/10.1016/j.jcis.2020.08.085.
Pannuzzo M, Esposito S, Wu LP, Key J, Aryal S, Celia C, Di Marzio L, Moghimi SM, Decuzzi P. Overcoming nanoparticle-mediated complement activation by floor PEG pairing. Nano Lett. 2020;20(6):4312–21. https://doi.org/10.1021/acs.nanolett.0c01011.
Ramezanzade L, Hosseini SF, Sajedi RH, Mirzai Nielsen A, Yaghmur A. Meals-grade hexosomes as environment friendly automobiles for supply of fish-purified antioxidant peptide. Meals Chem. 2024. https://doi.org/10.1016/j.foodchem.2023.137446.
Istvan ES, Deisenhofer J. The construction of the catalytic portion of human HMG-CoA reductase. Biochim Biophys Acta. 2000;1529:9–18. https://doi.org/10.1016/s1388-1981(00)00134-7.
Dansette PM, Jaoen M, Pons C. HMG-CoA reductase exercise in human liver microsomes: comparative inhibition by statins. Exp Toxicol Pathol. 2000;52(2):145–8. https://doi.org/10.1016/S0940-2993(00)80107-4.
Gupta AK, Rudney H. Plasma membrane sphingomyelin and the regulation of HMG-CoA reductase exercise and ldl cholesterol biosynthesis in cell cultures. J Lipid Res. 1991;32:125–36. https://doi.org/10.1016/S0022-2275(20)42251-5.
Śliż D, Marcinkiewicz A, Olejniczak D, Jankowski P, Staniszewska A, Mamcarz A, Walusiak-Skorupa J. Hypercholesterolemia and prevention of cardiovascular illnesses within the gentle of preventive medical examinations of staff in Poland. Int J Occup Med Environ Well being. 2019;32(6):865–72. https://doi.org/10.13075/ijomeh.1896.01446.
Istvan ES, Palnitkar M, Buchanan SK, Deisenhofer J. Crystal construction of the catalytic portion of human HMG-CoA reductase: insights into regulation of exercise and catalysis. EMBO J. 2000;19(5):819–30. https://doi.org/10.1093/emboj/19.5.819.
Roitelman J, Olender EH, Bar-Nun S, Dunn WA, Simoni RD. Immunological proof for eight spans within the membrane area of 3-hydroxy-3-methylglutaryl C Nzyme A reductase: implications for enzyme degradation within the endoplasmic reticulum. J Cell Biol. 1992;117(5):959–73. https://doi.org/10.1083/jcb.117.5.959.
Holdgate GA, Ward WHJ, Mctaggart F. Molecular mechanism for inhibition of 3-hydroxy-3-methylglutaryl CoA (HMG-CoA) reductase by rosuvastatin. Biochem Soc Trans. 2003. https://doi.org/10.1042/bst0310528.
Arkhypova V, Soldatkin O, Soldatkin A, Dzyadevych S. Electrochemical biosensors based mostly on enzyme inhibition impact. Chem Rec. 2024. https://doi.org/10.1002/tcr.202300214.
Zaborowska-Mazurkiewicz M, Torabi M, Bilewicz R. Gold electrode modified with proteoliposome-derived bilayer for electrochemical research of HMG-CoA reductase and its. Electrochim Acta. 2024. https://doi.org/10.1016/j.electacta.2024.143788.
Hupfeld S, Holsaeter AM, Skar M, Frantzen CB, Brandl M. Liposome measurement evaluation by dynamic/static gentle scattering upon measurement exclusion-/discipline flow-fractionation. J Nanosci Nanotechnol. 2006;6(9–10):3025–31. https://doi.org/10.1166/jnn.2006.454.
Stetefeld J, McKenna SA, Patel TR. Dynamic gentle scattering: a sensible information and functions in biomedical sciences. Biophys Rev. 2016;8(4):409–27. https://doi.org/10.1007/s12551-016-0218-6.
Pangestika I, Oksal E, Tengku Muhammad TS, Amir H, Syamsumir DF, Wahid MEA, Andriani Y. Inhibitory results of tangeretin and trans-ethyl caffeate on the HMG-CoA reductase exercise: potential brokers for lowering levels of cholesterol. Saudi J Biol Sci. 2020;27(8):1947–60. https://doi.org/10.1016/j.sjbs.2020.06.010.
De Lima Santos H, Lopes ML, Maggio B, Ciancaglini P. Na, Ok-ATPase reconstituted in liposomes: results of lipid composition on hydrolytic exercise and enzyme orientation. Colloids Surf B Biointerfaces. 2005;41(4):239–48. https://doi.org/10.1016/j.colsurfb.2004.12.013.
Gholamhoseinian A, Shahouzechi B, Sharifi-Far F. Inhibitory exercise of some plant methanol extracts on 3-hydroxy-3-methylglutaryl coenzyme a reductase. Int J Pharmacol. 2010;6(5):705–11.
Kochius S, Park JB, Ley C, Könst P, Hollmann F, Schrader J, Holtmann D. Electrochemical regeneration of oxidised nicotinamide cofactors in a scalable reactor. J Mol Catal B Enzym. 2014;103:94–9. https://doi.org/10.1016/j.molcatb.2013.07.006.
Schröder AI, Steckhan E, Liese A. In Situ NAD+ regeneration utilizing 2,2′-Azinobis(3-ethylbenzo-thiazoline-6-sulfonate) as an electron switch mediator. J Electroanal Chem. 2003;541:109–15.
Burnett JWH, Chen H, Li J, Li Y, Huang S, Shi J, McCue AJ, Howe RF, Minteer SD, Wang X. Supported Pt enabled proton-driven NAD(P)+Regeneration for biocatalytic oxidation. ACS Appl Mater Interfaces. 2022. https://doi.org/10.1021/acsami.2c01743.
Demurtas D, Guichard P, Martiel I, Mezzenga R, Hébert C, Sagalowicz L. Direct visualization of dispersed lipid bicontinuous cubic phases by cryo-electron tomography. Nat Commun. 2015. https://doi.org/10.1038/ncomms9915.
Helvig S, Azmi IDM, Moghimi SM, Yaghmur A. Latest advances in Cryo-TEM imaging of sentimental lipid nanoparticles. AIMS Biophys. 2015;2(2):116–30. https://doi.org/10.3934/biophy.2015.2.116.
Azmi IDM, Moghimi SM, Yaghmur A. Cubosomes and hexosomes as versatile platforms for drug supply. Ther Deliv. 2015;6(12):1347–64. https://doi.org/10.4155/tde.15.81.
Mat Azmi ID, Wu L, Wibroe PP, Nilsson C, Østergaard J, Stürup S, Gammelgaard B, Urtti A, Moghimi SM, Yaghmur A. Modulatory impact of human plasma on the interior nanostructure and measurement traits of liquid-crystalline nanocarriers. Langmuir. 2015;31(18):5042–9. https://doi.org/10.1021/acs.langmuir.5b00830.
Gorton L, Domınguez E. Electrocatalytic oxidation of NADPH at mediator-modified electrodes. Rev Mol Biotechnol. 2002;82:371392. https://doi.org/10.1016/s1389-0352(01)00053-8.
Bourbonnais R, Leech D, Paice MG. Electrochemical evaluation of the interactions of laccase mediators with lignin mannequin compounds. Biochim Biophys Acta. 1998;1379:381–90. https://doi.org/10.1016/S0304-4165(97)00117-7.