Lipid liquid-crystalline nanoparticles as an appropriate platform for accommodating delicate membrane proteins: monitoring the exercise of HMG-CoA reductase | Journal of Nanobiotechnology


  • Akinc A, Maier MA, Manoharan M, Fitzgerald Ok, Jayaraman M, Barros S, Ansell S, Du X, Hope MJ, Madden TD, Mui BL, Semple SC, Tam YK, Ciufolini M, Witzigmann D, Kulkarni JA, van der Meel R, Cullis PR. The onpattro story and the medical translation of nanomedicines containing nucleic acid-based medicine. Nat Nanotechnol. 2019;14(12):1084–7. https://doi.org/10.1038/s41565-019-0591-y.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Meikle TG, Dharmadana D, Hoffmann SV, Jones NC, Drummond CJ, Conn CE. Evaluation of the construction, loading and exercise of six antimicrobial peptides encapsulated in cubic section lipid nanoparticles. J Colloid Interface Sci. 2021;587:90–100. https://doi.org/10.1016/j.jcis.2020.11.124.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ryan S, Shortall Ok, Dully M, Djehedar A, Murray D, Butler J, Neilan J, Soulimane T, Hudson SP. Lengthy performing injectables for therapeutic proteins. Colloids Surf B Biointerfaces. 2022;217:112644. https://doi.org/10.1016/j.colsurfb.2022.112644.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • van t’ Hag L, Gras SL, Conn CE, Drummond CJ. Lyotropic liquid crystal engineering transferring past binary compositional house—ordered nanostructured amphiphile self-assembly supplies by design. Chem Soc Rev. 2017;46(10):2705–31. https://doi.org/10.1039/C6CS00663A.

    Article 
    PubMed 

    Google Scholar
     

  • Zhen G, Hinton TM, Muir BW, Shi S, Tizard M, McLean KM, Hartley PG, Gunatillake P. Glycerol monooleate-based nanocarriers for SiRNA supply in vitro. Mol Pharm. 2012;9(9):2450–7. https://doi.org/10.1021/mp200662f.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao Z, Jing B, Wang Y, Wan W, Dong X, Liu Y. Exploring the impression of lipid nanoparticles on protein stability and mobile proteostasis. J Colloid Interface Sci. 2025;678:656–65. https://doi.org/10.1016/j.jcis.2024.08.146.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Viegas C, Seck F, Fonte P. An perception on lipid nanoparticles for therapeutic proteins supply. J Drug Deliv Sci Technol. 2022. https://doi.org/10.1016/j.jddst.2022.103839.

    Article 

    Google Scholar
     

  • Dan N, Safran SA. Impact of lipid traits on the construction of transmembrane proteins. Biophys J. 1998;75(3):1410–4. https://doi.org/10.1016/S0006-3495(98)74059-7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Almsherqi ZA, Landh T, Kohlwein SD, Deng Y. Cubic membranes: the lacking dimension of cell membrane group. Int Rev Cell Mol Biol. 2009;274:275–342. https://doi.org/10.1016/S1937-6448(08)02006-6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kulkarni CV, Wachter W, Iglesias-Salto G, Engelskirchen S, Ahualli S. Monoolein: a magic lipid? Phys Chem Chem Phys. 2011;13(8):3004–21. https://doi.org/10.1039/c0cp01539c.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhai J, Fong C, Tran N, Drummond CJ. Non-lamellar lyotropic liquid crystalline lipid nanoparticles for the following era of nanomedicine. ACS Nano. 2019;13(6):6178–206. https://doi.org/10.1021/acsnano.8b07961.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhai J, Hinton TM, Waddington LJ, Fong C, Tran N, Mulet X, Drummond CJ, Muir BW. Lipid-PEG conjugates sterically stabilize and cut back the toxicity of phytantriol-based lyotropic liquid crystalline nanoparticles. Langmuir. 2015;31(39):10871–80. https://doi.org/10.1021/acs.langmuir.5b02797.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Larsson Ok, Tiberg F. Periodic minimal floor buildings in bicontinuous lipid-water phases and nanoparticles. Curr Opin Colloid Interface Sci. 2005;9(6):365–9. https://doi.org/10.1016/j.cocis.2004.12.002.

    Article 
    CAS 

    Google Scholar
     

  • Narayanan T, Konovalov O. Synchrotron scattering strategies for nanomaterials and delicate matter analysis. Supplies. 2020. https://doi.org/10.3390/ma13030752.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Caffrey M, Cherezov V. Crystallizing membrane proteins utilizing lipidic mesophases. Nat Protoc. 2009;4(5):706–31. https://doi.org/10.1038/nprot.2009.31.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Landau EM, Jurg J, Rosenbusch P, Kaback HR. Lipidic cubic phases: a novel idea for the crystallization of membrane proteins (bacteriorhodopsin structurebicontinuous phaseslipidic matricesx-ray crystallography). Biophysics. 1996;93:14532–5. https://doi.org/10.1073/pnas.93.25.14532.

    Article 
    CAS 

    Google Scholar
     

  • Katona G, Andréasson U, Landau EM, Andréasson L-E, Neutze R. Lipidic cubic section crystal construction of the photosynthetic response centre from Rhodobacter sphaeroides at 2.35Å decision. J Mol Biol. 2003;331(3):681–92. https://doi.org/10.1016/S0022-2836(03)00751-4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li D, Caffrey M. Lipid cubic section as a membrane mimetic for integral membrane protein enzymes. Proc Natl Acad Sci. 2011;108(21):8639–44. https://doi.org/10.1073/pnas.1101815108.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lyons JA, Aragão D, Slattery O, Pisliakov AV, Soulimane T, Caffrey M. structural insights into electron switch in Caa3-type cytochrome oxidase. Nature. 2012;487(7408):514–8. https://doi.org/10.1038/nature11182.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tiefenbrunn T, Liu W, Chen Y, Katritch V, Stout CD, Price JA, Cherezov V. Excessive decision construction of the Ba3 cytochrome c oxidase from thermus thermophilus in a lipidic setting. PLoS ONE. 2011;6(7): e22348.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nazaruk E, Bilewicz R. Catalytic exercise of oxidases hosted in lipidic cubic phases on electrodes. Bioelectrochemistry. 2007. https://doi.org/10.1016/j.bioelechem.2006.12.007.

    Article 
    PubMed 

    Google Scholar
     

  • Nazaruk E, Landau EM, Bilewicz R. Membrane certain enzyme hosted in liquid crystalline cubic section for sensing and gasoline cells. Electrochim Acta. 2014;140:96–100. https://doi.org/10.1016/j.electacta.2014.05.130.

    Article 
    CAS 

    Google Scholar
     

  • Zatloukalova M, Nazaruk E, Bilewicz R. Electrogenic transport of Na+/Ok+-ATPase integrated in lipidic cubic phases as a mannequin biomimetic membrane. Electrochim Acta. 2019;310:113–21. https://doi.org/10.1016/J.ELECTACTA.2019.04.082.

    Article 
    CAS 

    Google Scholar
     

  • Zabara A, Negrini R, Baumann P, Onaca-Fischer O, Mezzenga R. Reconstitution of OmpF membrane protein on bended lipid bilayers: perforated hexagonal mesophases. Chem Commun. 2014;50(20):2642–5. https://doi.org/10.1039/C3CC49590F.

    Article 
    CAS 

    Google Scholar
     

  • Zabara A, Negrini R, Onaca-Fischer O, Mezzenga R. Perforated bicontinuous cubic phases with PH-responsive topological channel interconnectivity. Small. 2013;9(21):3602–9. https://doi.org/10.1002/smll.201300348.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Speziale C, Salvati Manni L, Manatschal C, Landau EM, Mezzenga R. A macroscopic H+ and Cl- Ions pump by way of reconstitution of EcClC membrane proteins in lipidic cubic mesophases. Proc Natl Acad Sci U S A. 2016;113(27):7491–6. https://doi.org/10.1073/pnas.1603965113.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miszta P, Nazaruk E, Nieciecka D, Możajew M, Krysiński P, Bilewicz R, Filipek S. The EcCLC antiporter embedded in lipidic liquid crystalline films-molecular dynamics simulations and electrochemical strategies. Phys Chem Chem Phys. 2022;24(5):3066–77. https://doi.org/10.1039/d1cp03992j.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nimigean CM. A radioactive uptake assay to measure ion transport throughout ion channel-containing liposomes. Nat Protoc. 2006;1(3):1207–12. https://doi.org/10.1038/nprot.2006.166.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Syeda R, Santos JS, Montal M, Bayley H. Tetrameric meeting of KvLm Ok+ channels with outlined numbers of voltage sensors. Proc Natl Acad Sci. 2012;109(42):16917–22. https://doi.org/10.1073/pnas.1205592109.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wakaskar RR. Basic overview of lipid-polymer hybrid nanoparticles, dendrimers, micelles, liposomes spongosomes and cubosomes. J Drug Goal. 2018;26(4):311–8. https://doi.org/10.1080/1061186X.2017.1367006.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Angelova A, Angelov B, Papahadjopoulos-Sternberg B, Ollivon M, Bourgaux C. Proteocubosomes: nanoporous automobiles with tertiary organized fluid interfaces. Langmuir. 2005;21(9):4138–43. https://doi.org/10.1021/la047745t.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Boge L, Bysell H, Ringstad L, Wennman D, Umerska A, Cassisa V, Eriksson J, Joly-Guillou M-L, Edwards Ok, Andersson M. Lipid-based liquid crystals as carriers for antimicrobial peptides: section habits and antimicrobial impact. Langmuir. 2016;32(17):4217–28. https://doi.org/10.1021/acs.langmuir.6b00338.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Angelova A, Garamus VM, Angelov B, Tian Z, Li Y, Zou A. Advances in structural design of lipid-based nanoparticle carriers for supply of macromolecular medicine, phytochemicals and anti-tumor brokers. Adv Colloid Interface Sci. 2017;249:331–45. https://doi.org/10.1016/j.cis.2017.04.006.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Azhari H, Strauss M, Hook S, Boyd BJ, Rizwan SB. Stabilising cubosomes with Tween 80 as a step in the direction of concentrating on lipid nanocarriers to the blood-brain barrier. Eur J Pharm Biopharm. 2016;104:148–55. https://doi.org/10.1016/j.ejpb.2016.05.001.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rizwan SB, Assmus D, Boehnke A, Hanley T, Boyd BJ, Rades T, Hook S. Preparation of phytantriol cubosomes by solvent precursor dilution for the supply of protein vaccines. Eur J Pharm Biopharm. 2011;79(1):15–22. https://doi.org/10.1016/J.EJPB.2010.12.034.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li D, Caffrey M. Construction and practical characterization of membrane integral proteins within the lipid cubic section. J Mol Biol. 2020;432(18):5104–23. https://doi.org/10.1016/j.jmb.2020.02.024.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yaghmur A, Mu H. Latest advances in drug supply functions of cubosomes, hexosomes, and stable lipid nanoparticles. Acta Pharm Sin B. 2021;11(4):871–85. https://doi.org/10.1016/j.apsb.2021.02.013.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Angelova A, Drechsler M, Garamus VM, Angelov B. Liquid crystalline nanostructures as PEGylated reservoirs of Omega-3 polyunsaturated fatty acids: structural insights towards supply formulations in opposition to neurodegenerative problems. ACS Omega. 2018;3(3):3235–47. https://doi.org/10.1021/acsomega.7b01935.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu Helvig S, Woythe L, Pham S, Bor G, Andersen H, Moein Moghimi S, Yaghmur A. A structurally numerous library of glycerol monooleate/oleic acid non-lamellar liquid crystalline nanodispersions stabilized with nonionic methoxypoly(ethylene glycol) (MPEG)-lipids exhibiting variable complement activation properties. J Colloid Interface Sci. 2021;582:906–17. https://doi.org/10.1016/j.jcis.2020.08.085.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pannuzzo M, Esposito S, Wu LP, Key J, Aryal S, Celia C, Di Marzio L, Moghimi SM, Decuzzi P. Overcoming nanoparticle-mediated complement activation by floor PEG pairing. Nano Lett. 2020;20(6):4312–21. https://doi.org/10.1021/acs.nanolett.0c01011.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ramezanzade L, Hosseini SF, Sajedi RH, Mirzai Nielsen A, Yaghmur A. Meals-grade hexosomes as environment friendly automobiles for supply of fish-purified antioxidant peptide. Meals Chem. 2024. https://doi.org/10.1016/j.foodchem.2023.137446.

    Article 
    PubMed 

    Google Scholar
     

  • Istvan ES, Deisenhofer J. The construction of the catalytic portion of human HMG-CoA reductase. Biochim Biophys Acta. 2000;1529:9–18. https://doi.org/10.1016/s1388-1981(00)00134-7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dansette PM, Jaoen M, Pons C. HMG-CoA reductase exercise in human liver microsomes: comparative inhibition by statins. Exp Toxicol Pathol. 2000;52(2):145–8. https://doi.org/10.1016/S0940-2993(00)80107-4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gupta AK, Rudney H. Plasma membrane sphingomyelin and the regulation of HMG-CoA reductase exercise and ldl cholesterol biosynthesis in cell cultures. J Lipid Res. 1991;32:125–36. https://doi.org/10.1016/S0022-2275(20)42251-5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Śliż D, Marcinkiewicz A, Olejniczak D, Jankowski P, Staniszewska A, Mamcarz A, Walusiak-Skorupa J. Hypercholesterolemia and prevention of cardiovascular illnesses within the gentle of preventive medical examinations of staff in Poland. Int J Occup Med Environ Well being. 2019;32(6):865–72. https://doi.org/10.13075/ijomeh.1896.01446.

    Article 
    PubMed 

    Google Scholar
     

  • Istvan ES, Palnitkar M, Buchanan SK, Deisenhofer J. Crystal construction of the catalytic portion of human HMG-CoA reductase: insights into regulation of exercise and catalysis. EMBO J. 2000;19(5):819–30. https://doi.org/10.1093/emboj/19.5.819.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roitelman J, Olender EH, Bar-Nun S, Dunn WA, Simoni RD. Immunological proof for eight spans within the membrane area of 3-hydroxy-3-methylglutaryl C Nzyme A reductase: implications for enzyme degradation within the endoplasmic reticulum. J Cell Biol. 1992;117(5):959–73. https://doi.org/10.1083/jcb.117.5.959.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Holdgate GA, Ward WHJ, Mctaggart F. Molecular mechanism for inhibition of 3-hydroxy-3-methylglutaryl CoA (HMG-CoA) reductase by rosuvastatin. Biochem Soc Trans. 2003. https://doi.org/10.1042/bst0310528.

    Article 
    PubMed 

    Google Scholar
     

  • Arkhypova V, Soldatkin O, Soldatkin A, Dzyadevych S. Electrochemical biosensors based mostly on enzyme inhibition impact. Chem Rec. 2024. https://doi.org/10.1002/tcr.202300214.

    Article 
    PubMed 

    Google Scholar
     

  • Zaborowska-Mazurkiewicz M, Torabi M, Bilewicz R. Gold electrode modified with proteoliposome-derived bilayer for electrochemical research of HMG-CoA reductase and its. Electrochim Acta. 2024. https://doi.org/10.1016/j.electacta.2024.143788.

    Article 

    Google Scholar
     

  • Hupfeld S, Holsaeter AM, Skar M, Frantzen CB, Brandl M. Liposome measurement evaluation by dynamic/static gentle scattering upon measurement exclusion-/discipline flow-fractionation. J Nanosci Nanotechnol. 2006;6(9–10):3025–31. https://doi.org/10.1166/jnn.2006.454.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stetefeld J, McKenna SA, Patel TR. Dynamic gentle scattering: a sensible information and functions in biomedical sciences. Biophys Rev. 2016;8(4):409–27. https://doi.org/10.1007/s12551-016-0218-6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pangestika I, Oksal E, Tengku Muhammad TS, Amir H, Syamsumir DF, Wahid MEA, Andriani Y. Inhibitory results of tangeretin and trans-ethyl caffeate on the HMG-CoA reductase exercise: potential brokers for lowering levels of cholesterol. Saudi J Biol Sci. 2020;27(8):1947–60. https://doi.org/10.1016/j.sjbs.2020.06.010.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • De Lima Santos H, Lopes ML, Maggio B, Ciancaglini P. Na, Ok-ATPase reconstituted in liposomes: results of lipid composition on hydrolytic exercise and enzyme orientation. Colloids Surf B Biointerfaces. 2005;41(4):239–48. https://doi.org/10.1016/j.colsurfb.2004.12.013.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gholamhoseinian A, Shahouzechi B, Sharifi-Far F. Inhibitory exercise of some plant methanol extracts on 3-hydroxy-3-methylglutaryl coenzyme a reductase. Int J Pharmacol. 2010;6(5):705–11.

    Article 

    Google Scholar
     

  • Kochius S, Park JB, Ley C, Könst P, Hollmann F, Schrader J, Holtmann D. Electrochemical regeneration of oxidised nicotinamide cofactors in a scalable reactor. J Mol Catal B Enzym. 2014;103:94–9. https://doi.org/10.1016/j.molcatb.2013.07.006.

    Article 
    CAS 

    Google Scholar
     

  • Schröder AI, Steckhan E, Liese A. In Situ NAD+ regeneration utilizing 2,2′-Azinobis(3-ethylbenzo-thiazoline-6-sulfonate) as an electron switch mediator. J Electroanal Chem. 2003;541:109–15.

    Article 

    Google Scholar
     

  • Burnett JWH, Chen H, Li J, Li Y, Huang S, Shi J, McCue AJ, Howe RF, Minteer SD, Wang X. Supported Pt enabled proton-driven NAD(P)+Regeneration for biocatalytic oxidation. ACS Appl Mater Interfaces. 2022. https://doi.org/10.1021/acsami.2c01743.

    Article 
    PubMed 

    Google Scholar
     

  • Demurtas D, Guichard P, Martiel I, Mezzenga R, Hébert C, Sagalowicz L. Direct visualization of dispersed lipid bicontinuous cubic phases by cryo-electron tomography. Nat Commun. 2015. https://doi.org/10.1038/ncomms9915.

    Article 
    PubMed 

    Google Scholar
     

  • Helvig S, Azmi IDM, Moghimi SM, Yaghmur A. Latest advances in Cryo-TEM imaging of sentimental lipid nanoparticles. AIMS Biophys. 2015;2(2):116–30. https://doi.org/10.3934/biophy.2015.2.116.

    Article 
    CAS 

    Google Scholar
     

  • Azmi IDM, Moghimi SM, Yaghmur A. Cubosomes and hexosomes as versatile platforms for drug supply. Ther Deliv. 2015;6(12):1347–64. https://doi.org/10.4155/tde.15.81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mat Azmi ID, Wu L, Wibroe PP, Nilsson C, Østergaard J, Stürup S, Gammelgaard B, Urtti A, Moghimi SM, Yaghmur A. Modulatory impact of human plasma on the interior nanostructure and measurement traits of liquid-crystalline nanocarriers. Langmuir. 2015;31(18):5042–9. https://doi.org/10.1021/acs.langmuir.5b00830.

    Article 
    CAS 

    Google Scholar
     

  • Gorton L, Domınguez E. Electrocatalytic oxidation of NADPH at mediator-modified electrodes. Rev Mol Biotechnol. 2002;82:371392. https://doi.org/10.1016/s1389-0352(01)00053-8.

    Article 

    Google Scholar
     

  • Bourbonnais R, Leech D, Paice MG. Electrochemical evaluation of the interactions of laccase mediators with lignin mannequin compounds. Biochim Biophys Acta. 1998;1379:381–90. https://doi.org/10.1016/S0304-4165(97)00117-7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles