Low-iridium stabilized ruthenium oxide anode catalyst for sturdy proton-exchange membrane water electrolysis


  • Kovač, A., Paranos, M. & Marciuš, D. Hydrogen in vitality transition: a evaluation. Int. J. Hydrog. Vitality 46, 10016–10035 (2021).

    Article 

    Google Scholar
     

  • Johnson, N. et al. Real looking roles for hydrogen sooner or later vitality transition. Nat. Rev. Clear. Technol. 1, 351–371 (2025).

    Article 

    Google Scholar
     

  • Horri, B. A. & Ozcan, H. Inexperienced hydrogen manufacturing by water electrolysis: present standing and challenges. Curr. Opin. Inexperienced Maintain. Chem. 47, 100932 (2024).

    Article 

    Google Scholar
     

  • Tüysüz, H. Alkaline water electrolysis for inexperienced hydrogen manufacturing. Acc. Chem. Res. 57, 558–567 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, R.-T. et al. Current advances in proton alternate membrane water electrolysis. Chem. Soc. Rev. 52, 5652–5683 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • IRENA Inexperienced Hydrogen Value Discount: Scaling up Electrolysers to Meet the 1.5°C Local weather Objective (IRENA, 2020).

  • Chen, Y. et al. Key elements and design technique for a proton alternate membrane water electrolyzer. Small Struct. 4, 2200130 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Wang, C. & Feng, L. Current advances and views of Ir-based anode catalysts in PEM water electrolysis. Vitality Adv. 3, 14–29 (2024).

    Article 

    Google Scholar
     

  • PGM administration. Johnson Matthey https://matthey.com/products-and-markets/pgms-and-circularity/pgm-management (2025).

  • Minke, C., Suermann, M., Bensmann, B. & Hanke-Rauschenbach, R. Is iridium demand a possible bottleneck within the realization of large-scale PEM water electrolysis?. Int. J. Hydrog. Vitality 46, 23581–23590 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Clapp, M., Zalitis, C. M. & Ryan, M. Views on present and future iridium demand and iridium oxide catalysts for PEM water electrolysis. Catal. Immediately 420, 114140 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Riedmayer, R., Paren, B. A., Schofield, L., Shao-Horn, Y. & Mallapragada, D. Proton alternate membrane electrolysis efficiency targets for attaining 2050 growth objectives constrained by iridium provide. Vitality Fuels 37, 8614–8623 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Q. et al. Lengthy-term stability challenges and alternatives in acidic oxygen evolution electrocatalysis. Angew. Chem. 135, e202216645 (2023).

    Article 

    Google Scholar
     

  • Hou, L. et al. Methods for the design of ruthenium-based electrocatalysts towards acidic oxygen evolution response. EES Catal. 1, 619–644 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Wu, Z.-Y. et al. Non-iridium-based electrocatalyst for sturdy acidic oxygen evolution response in proton alternate membrane water electrolysis. Nat. Mater. 22, 100–108 (2023.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hrbek, T., Kúš, P., Kosto, Y., Rodríguez, M. G. & Matolínová, I. Magnetron-sputtered thin-film catalyst with low-Ir-Ru content material for water electrolysis: long-term stability and degradation evaluation. J. Energy Sources 556, 232375 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Cheng, J., Zhang, H., Chen, G. & Zhang, Y. Research of IrxRu1−xO2 oxides as anodic electrocatalysts for stable polymer electrolyte water electrolysis. Electrochim. Acta 54, 6250–6256 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Huynh, T. B. N. et al. Ir–Ru electrocatalysts embedded in N-doped carbon matrix for proton alternate membrane water electrolysis. Adv. Funct. Mater. 33, 2301999 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Wen, Y. et al. Stabilizing extremely energetic Ru websites by suppressing lattice oxygen participation in acidic water oxidation. J. Am. Chem. Soc. 143, 6482–6490 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Joo, J. et al. Mn-dopant differentiating the Ru and Ir oxidation states in catalytic oxides towards sturdy oxygen evolution response in acidic electrolyte. Small Strategies 6, 2101236 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zhu, W. et al. Secure and oxidative charged Ru improve the acidic oxygen evolution response exercise in two-dimensional ruthenium–iridium oxide. Nat. Commun. 14, 5365 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pantò, F., Siracusano, S., Briguglio, N. & Aricò, A. S. Sturdiness of a recombination catalyst-based membrane-electrode meeting for electrolysis operation at excessive present density. Appl. Vitality 279, 115809 (2020).

    Article 

    Google Scholar
     

  • Siracusano, S. et al. New insights into the soundness of a excessive efficiency nanostructured catalyst for sustainable water electrolysis. Nano Vitality 40, 618–632 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Tao, L. et al. Mass-efficient catalyst layer of hierarchical sub-nanosheets on nanowire for sensible proton alternate membrane electrolyzer. Joule 8, 450–460 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Electrolyzer MEA – 3 Layer. FUELCELL Retailer https://www.fuelcellstore.com/electrolyzer-ccm (2025).

  • Chen, F.-Y., Wu, Z.-Y., Adler, Z. & Wang, H. Stability challenges of electrocatalytic oxygen evolution response: From mechanistic understanding to reactor design. Joule 5, 1704–1731 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Escudero-Escribano, M. et al. Significance of floor IrOx in stabilizing RuO2 for oxygen evolution. J. Phys. Chem. B 122, 947–955 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kasian, O. et al. On the origin of the improved ruthenium stability in RuO2–IrO2 combined oxides. J. Electrochem. Soc. 163, F3099–F3104 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Escalera-López, D. et al. Section- and floor composition-dependent electrochemical stability of ir-ru nanoparticles throughout oxygen evolution response. ACS Catal. 11, 9300–9316 (2021).

    Article 

    Google Scholar
     

  • Zagalskaya, A. & Alexandrov, V. Function of defects within the interaction between adsorbate evolving and lattice oxygen mechanisms of the oxygen evolution response in RuO2 and IrO2. ACS Catal. 10, 3650–3657 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Klyukin, Okay., Zagalskaya, A. & Alexandrov, V. Function of dissolution intermediates in selling oxygen evolution response at RuO2(110) floor. J. Phys. Chem. C 123, 22151–22157 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Cherevko, S. et al. Dissolution of noble metals throughout oxygen evolution in acidic media. ChemCatChem 6, 2219–2223 (2014).

    Article 
    CAS 

    Google Scholar
     

  • She, L. et al. On the sturdiness of iridium-based electrocatalysts towards the oxygen evolution response underneath acid atmosphere. Adv. Funct. Mater. 32, 2108465 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Park, W. & Chung, D. Y. Exercise–stability relationships in oxygen evolution response. ACS Mater. Au 5, 1–10 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kumar, S. S. & Lim, H. Current advances in hydrogen manufacturing by way of proton alternate membrane water electrolysis—a evaluation. Maintain. Vitality Fuels 7, 3560–3583 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Kuhnert, E., Hacker, V. & Bodner, M. A evaluation of accelerated stress assessments for enhancing MEA sturdiness in PEM water electrolysis cells. Int. J. Vitality Res. 2023, 1–23 (2023).

    Article 

    Google Scholar
     

  • Jin, H. et al. Dynamic rhenium dopant boosts ruthenium oxide for sturdy oxygen evolution. Nat. Commun. 14, 354 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Solar, H. & Jung, W. Current advances in doped ruthenium oxides as high-efficiency electrocatalysts for the oxygen evolution response. J. Mater. Chem. A 9, 15506–15521 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Technical targets for proton alternate membrane electrolysis. US Division of Vitality https://www.vitality.gov/eere/fuelcells/technical-targets-proton-exchange-membrane-electrolysis (2022).

  • Kong, S. et al. Acid-stable manganese oxides for proton alternate membrane water electrolysis. Nat. Catal. 7, 252–261 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Ram, R. et al. Water-hydroxide trapping in cobalt tungstate for proton alternate membrane water electrolysis. Science 384, 1373–1380 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chong, L. et al. La- and Mn-doped cobalt spinel oxygen evolution catalyst for proton alternate membrane electrolysis. Science 380, 609–616 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pan, S. et al. Environment friendly and secure noble-metal-free catalyst for acidic water oxidation. Nat. Commun. 13, 2294 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jo, S. et al. Nonprecious high-entropy chalcogenide glasses-based electrocatalysts for environment friendly and secure acidic oxygen evolution response in proton alternate membrane water electrolysis. Adv. Vitality Mater. 13, 2301420 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Li, A. et al. Atomically dispersed hexavalent iridium oxide from MnO2 discount for oxygen evolution catalysis. Science 384, 666–670 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Flores, R. A. et al. Lively studying accelerated discovery of secure iridium oxide polymorphs for the oxygen evolution response. Chem. Mater. 32, 5854–5863 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Nong, H. N. et al. A singular oxygen ligand atmosphere facilitates water oxidation in hole-doped IrNiOx core–shell electrocatalysts. Nat. Catal. 1, 841–851 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Lee, W. H. et al. Excessive crystallinity design of Ir-based catalysts drives catalytic reversibility for water electrolysis and gas cells. Nat. Commun. 12, 4271 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi, Z. et al. Confined Ir single websites with triggered lattice oxygen redox: towards boosted and sustained water oxidation catalysis. Joule 5, 2164–2176 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zheng, X. et al. Ir-Sn pair-site triggers key oxygen radical intermediate for environment friendly acidic water oxidation. Sci. Adv. 9, eadi8025 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, M. & Feng, Z. Pitfalls in X-ray absorption spectroscopy evaluation and interpretation: a sensible information for basic customers. Curr. Opin. Electrochem. 30, 100803 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Laha, S. et al. Ruthenium oxide nanosheets for enhanced oxygen evolution catalysis in acidic medium. Adv. Vitality Mater. 9, 1803795 (2019).

    Article 

    Google Scholar
     

  • Liu, H. et al. Eliminating over-oxidation of ruthenium oxides by niobium for extremely secure electrocatalytic oxygen evolution in acidic media. Joule 7, 558–573 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Kresse, G. & Furthmüller, J. Environment friendly iterative schemes for ab initio total-energy calculations utilizing a plane-wave foundation set. Phys. Rev. B 54, 11169–11186 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Kresse, G. & Furthmüller, J. Effectivity of ab-initio whole vitality calculations for metals and semiconductors utilizing a plane-wave foundation set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Perdew, J. P., Burke, Okay. & Ernzerhof, M. Generalized gradient approximation made easy. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A constant and correct ab initio parametrization of density useful dispersion correction (DFT-D) for the 94 components H–Pu. J. Chem. Phys. 132, 154104 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Blöchl, P. E. Projector augmented-wave methodology. Phys. Rev. B 50, 17953–17979 (1994).

    Article 

    Google Scholar
     

  • Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. & Teller, E. Equation of state calculations by quick computing machines. J. Chem. Phys. 21, 1087–1092 (1953).

    Article 
    CAS 

    Google Scholar
     

  • Leshchev, D. et al. The Internal Shell Spectroscopy beamline at NSLS-II: a facility for in situ and operando X-ray absorption spectroscopy for supplies analysis. J. Synchrotron Radiat. 29, 1095–1106 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin, Y. et al. Chromium–ruthenium oxide stable answer electrocatalyst for extremely environment friendly oxygen evolution response in acidic media. Nat. Commun. 10, 162 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles