FAO, IFAD, UNICEF, WFP & WHO. The State of Meals Safety and Vitamin within the World 2022: Repurposing Meals and Agricultural Insurance policies to Make Wholesome Diets Extra Reasonably priced (FAO, 2022); https://doi.org/10.4060/cc0639en
Lowry, G. V., Avellan, A. & Gilbertson, L. M. Alternatives and challenges for nanotechnology within the agri-tech revolution. Nat. Nanotechnol. 14, 517–522 (2019).
Lowry, G. V. et al. In the direction of realizing nano-enabled precision supply in vegetation. Nat. Nanotechnol. 19, 1255–1269 (2024).
Giraldo, J. P., Wu, H., Newkirk, G. M. & Kruss, S. Nanobiotechnology approaches for engineering good plant sensors. Nat. Nanotechnol. 14, 541–553 (2019).
Kah, M., Tufenkji, N. & White, J. C. Nano-enabled methods to reinforce crop diet and safety. Nat. Nanotechnol. 14, 532–540 (2019).
Wang, D. et al. Nano-enabled pesticides for sustainable agriculture and world meals safety. Nat. Nanotechnol. 17, 347–360 (2022).
Gupta, S. et al. Transportable Raman leaf-clip sensor for speedy detection of plant stress. Sci. Rep. 10, 20206 (2020).
Lohaus, G. & Schwerdtfeger, M. Comparability of sugars, iridoid glycosides and amino acids in nectar and phloem sap of Maurandya barclayana, Lophospermum erubescens, and Brassica napus. PLoS ONE 9, e87689 (2014).
Yin, H. et al. Soil sensors and plant wearables for good and precision agriculture. Adv. Mater. 33, 2007764 (2021).
Cao, Y., Lim, E., Xu, M., Weng, J. Ok. & Marelli, B. Precision supply of multiscale payloads to tissue-specific targets in vegetation. Adv. Sci. 7, 1903551 (2020).
Cao, Y. et al. Drug supply in vegetation utilizing silk microneedles. Adv. Mater. 35, 2205794 (2023).
Fiorello, I. et al. Plant-like hooked miniature machines for on-leaf sensing and supply. Commun. Mater. 2, 103 (2021).
Paul, R. et al. Extraction of plant DNA by microneedle patch for speedy detection of plant illnesses. ACS Nano 13, 6540–6549 (2019).
Wang, S. et al. Chromatic covalent natural frameworks enabling in-vivo chemical tomography. Nat. Commun. 15, 9300 (2024).
Yi, X., Yuan, Z., Yu, X., Zheng, L. & Wang, C. Novel microneedle patch-based surface-enhanced raman spectroscopy sensor for the detection of pesticide residues. ACS Appl. Mater. Interfaces 15, 4873–4882 (2023).
Baek, S., Jeon, E., Park, Ok. S., Yeo, Ok.-H. & Lee, J. Monitoring of water transportation in plant stem with microneedle sap circulate sensor. J. Microelectromechanical Syst. 27, 440–447 (2018).
Lyu, S. et al. Going under and past the floor: microneedle construction, supplies, medicine, fabrication, and purposes for wound therapeutic and tissue regeneration. Bioact. Mater. 27, 303–326 (2023).
Ita, Ok. Ceramic microneedles and hole microneedles for transdermal drug supply: 20 years of analysis. J. Drug Deliv. Sci. Technol. 44, 314–322 (2018).
van der Maaden, Ok. et al. Microneedle-based drug and vaccine supply through nanoporous microneedle arrays. Drug Deliv. Transl. Res. 5, 397–406 (2015).
Liu, M. et al. Exact and high-throughput supply of micronutrients in vegetation enabled by pollen-inspired spiny and biodegradable microcapsules. Adv. Mater. 36, 2401192 (2024).
Marelli, B. & Behrens, A. Silk protein can prolong shelf life and enhance meals safety. Nat. Rev. Bioeng 1, 788–790 (2023).
Aldawood, F. Ok., Andar, A. & Desai, S. A complete overview of microneedles: sorts, supplies, processes, characterizations and purposes. Polymers 13, 2815 (2021).
Garg, N. et al. Section 1, randomized, rater and participant blinded placebo-controlled examine of the security, reactogenicity, tolerability and immunogenicity of H1N1 influenza vaccine delivered by VX-103 (a MIMIX microneedle patch [MAP] system) in wholesome adults. PLoS ONE 19, e0303450 (2024).
Koeppel, A., Laity, P. R. & Holland, C. The affect of steel ions on native silk rheology. Acta Biomater. 117, 204–212 (2020).
Foo, C. W. P. et al. Function of pH and cost on silk protein meeting in bugs and spiders. Appl. Phys. A 82, 223–233 (2006).
Marelli, B. et al. Programming operate into mechanical varieties by directed meeting of silk bulk supplies. Proc. Natl Acad. Sci. USA 114, 451–456 (2017).
Naciri, R., Lahrir, M., Benadis, C., Chtouki, M. & Oukarroum, A. Interactive impact of potassium and cadmium on development, root morphology and chlorophyll a fluorescence in tomato plant. Sci. Rep. 11, 5384 (2021).
Schaefer, C., Laity, P. R., Holland, C. & McLeish, T. C. B. Silk protein answer: a pure instance of sticky reptation. Macromolecules 53, 2669–2676 (2020).
Agricultural Manufacturing Statistics 2000–2020 FAOSTAT Analytical Temporary Sequence No. 41 (FAO, 2022).
Zvinavashe, A. T. et al. Degradation of regenerated silk fibroin in soil and marine environments. ACS Maintain. Chem. Eng 10, 11088–11097 (2022).
Liu, M.-J. et al. Regulatory divergence in wound-responsive gene expression between domesticated and wild tomato. Plant Cell 30, 1445–1460 (2018).
Scranton, M. A., Fowler, J. H., Girke, T. & Walling, L. L. Microarray evaluation of tomato’s early and late wound response reveals new regulatory targets for leucine aminopeptidase A. PLoS ONE 8, e77889 (2013).
Pearce, G., Strydom, D., Johnson, S. & Ryan, C. A. A polypeptide from tomato leaves induces wound-inducible proteinase inhibitor proteins. Science 253, 895–897 (1991).
Dombrowski, J. E. Salt stress activation of wound-related genes in tomato vegetation. Plant Physiol. 132, 2098–2107 (2003).
Fan, Y., Yang, W., Yan, Q., Chen, C. & Li, J. Genome-wide identification and expression evaluation of the protease inhibitor gene households in tomato. Genes 11, 1 (2020).
Capiati, D. A., País, S. M. & Téllez-Iñón, M. T. Wounding will increase salt tolerance in tomato vegetation: proof on the participation of calmodulin-like actions in cross-tolerance signalling. J. Exp. Bot. 57, 2391–2400 (2006).
Schenstnyi, Ok. et al. The tomato resistance gene Bs4 suppresses leaf watersoaking phenotypes induced by AvrHah1, a transcription activator-like effector from tomato-pathogenic xanthomonads. New Phytol. 236, 1856–1870 (2022).
Merry, R. et al. Iron deficiency in soybean. Crop Sci. 62, 36–52 (2022).
Bhakta, I., Phadikar, S. & Majumder, Ok. State-of-the-art applied sciences in precision agriculture: a scientific overview. J. Sci. Meals Agric. 99, 4878–4888 (2019).
Lew, T. T. S. et al. Species-independent analytical instruments for next-generation agriculture. Nat. Vegetation 6, 1408–1417 (2020).
Vitamin and Mineral Necessities in Human Vitamin 2nd edn (FAO, WHO, 2004).
Suhani, I., Sahab, S., Srivastava, V. & Singh, R. P. Impression of cadmium air pollution on meals security and human well being. Curr. Opin. Toxicol. 27, 1–7 (2021).
FAO & WHO. Codex Alimentarius: Worldwide Meals Requirements (FAO, 1995).
Chung, P. J. et al. Speedy detection and quantification of plant innate immunity response utilizing Raman spectroscopy. Entrance. Plant Sci. 12, 746586 (2021).
Ang, M. C.-Y. et al. Decoding early stress signaling waves in residing vegetation utilizing nanosensor multiplexing. Nat. Commun. 15, 2943 (2024).
vander Straeten, A. et al. A microneedle vaccine printer for thermostable COVID-19 mRNA vaccines. Nat. Biotechnol. 42, 510–517 (2024).
Rigoldi, F. & Marelli, B. Silk peptide meeting within the presence of sodium and copper ions – scripts assortment and snippet of molecular simulations outcomes. Zenodo https://doi.org/10.5281/zenodo.15079007 (2025).
Huang, J. et al. CHARMM36m: an improved power discipline for folded and intrinsically disordered proteins. Nat. Strategies 14, 71–73 (2017).
Liao, Q., Kamerlin, S. C. L. & Strodel, B. Growth and software of a nonbonded Cu2+ mannequin that features the Jahn–Teller impact. J. Phys. Chem. Lett. 6, 2657–2662 (2015).
Phillips, J. C. et al. Scalable molecular dynamics on CPU and GPU architectures with NAMD. J. Chem. Phys. 153, 044130 (2020).
Hu, X., Kaplan, D. & Cebe, P. Figuring out beta-sheet crystallinity in fibrous proteins by thermal evaluation and infrared spectroscopy. Macromolecules 39, 6161–6170 (2006).
Li, Z., Persits, N., Grey, D. J. & Ram, R. J. Computational polarized Raman microscopy on sub-surface nanostructures with sub-diffraction-limit decision. Decide. Specific 29, 38027–38043 (2021).
Zhao, J., Lui, H., McLean, D. I. & Zeng, H. Automated autofluorescence background subtraction algorithm for biomedical Raman spectroscopy. Appl. Spectrosc. 61, 1225–1232 (2007).