Nanofabrication of silk microneedles for high-throughput micronutrient supply and steady sap monitoring in vegetation


  • FAO, IFAD, UNICEF, WFP & WHO. The State of Meals Safety and Vitamin within the World 2022: Repurposing Meals and Agricultural Insurance policies to Make Wholesome Diets Extra Reasonably priced (FAO, 2022); https://doi.org/10.4060/cc0639en

  • Lowry, G. V., Avellan, A. & Gilbertson, L. M. Alternatives and challenges for nanotechnology within the agri-tech revolution. Nat. Nanotechnol. 14, 517–522 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lowry, G. V. et al. In the direction of realizing nano-enabled precision supply in vegetation. Nat. Nanotechnol. 19, 1255–1269 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Giraldo, J. P., Wu, H., Newkirk, G. M. & Kruss, S. Nanobiotechnology approaches for engineering good plant sensors. Nat. Nanotechnol. 14, 541–553 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kah, M., Tufenkji, N. & White, J. C. Nano-enabled methods to reinforce crop diet and safety. Nat. Nanotechnol. 14, 532–540 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, D. et al. Nano-enabled pesticides for sustainable agriculture and world meals safety. Nat. Nanotechnol. 17, 347–360 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gupta, S. et al. Transportable Raman leaf-clip sensor for speedy detection of plant stress. Sci. Rep. 10, 20206 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lohaus, G. & Schwerdtfeger, M. Comparability of sugars, iridoid glycosides and amino acids in nectar and phloem sap of Maurandya barclayana, Lophospermum erubescens, and Brassica napus. PLoS ONE 9, e87689 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yin, H. et al. Soil sensors and plant wearables for good and precision agriculture. Adv. Mater. 33, 2007764 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Cao, Y., Lim, E., Xu, M., Weng, J. Ok. & Marelli, B. Precision supply of multiscale payloads to tissue-specific targets in vegetation. Adv. Sci. 7, 1903551 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Cao, Y. et al. Drug supply in vegetation utilizing silk microneedles. Adv. Mater. 35, 2205794 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Fiorello, I. et al. Plant-like hooked miniature machines for on-leaf sensing and supply. Commun. Mater. 2, 103 (2021).

  • Paul, R. et al. Extraction of plant DNA by microneedle patch for speedy detection of plant illnesses. ACS Nano 13, 6540–6549 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, S. et al. Chromatic covalent natural frameworks enabling in-vivo chemical tomography. Nat. Commun. 15, 9300 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yi, X., Yuan, Z., Yu, X., Zheng, L. & Wang, C. Novel microneedle patch-based surface-enhanced raman spectroscopy sensor for the detection of pesticide residues. ACS Appl. Mater. Interfaces 15, 4873–4882 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Baek, S., Jeon, E., Park, Ok. S., Yeo, Ok.-H. & Lee, J. Monitoring of water transportation in plant stem with microneedle sap circulate sensor. J. Microelectromechanical Syst. 27, 440–447 (2018).

    Article 

    Google Scholar
     

  • Lyu, S. et al. Going under and past the floor: microneedle construction, supplies, medicine, fabrication, and purposes for wound therapeutic and tissue regeneration. Bioact. Mater. 27, 303–326 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ita, Ok. Ceramic microneedles and hole microneedles for transdermal drug supply: 20 years of analysis. J. Drug Deliv. Sci. Technol. 44, 314–322 (2018).

    Article 
    CAS 

    Google Scholar
     

  • van der Maaden, Ok. et al. Microneedle-based drug and vaccine supply through nanoporous microneedle arrays. Drug Deliv. Transl. Res. 5, 397–406 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, M. et al. Exact and high-throughput supply of micronutrients in vegetation enabled by pollen-inspired spiny and biodegradable microcapsules. Adv. Mater. 36, 2401192 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Marelli, B. & Behrens, A. Silk protein can prolong shelf life and enhance meals safety. Nat. Rev. Bioeng 1, 788–790 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Aldawood, F. Ok., Andar, A. & Desai, S. A complete overview of microneedles: sorts, supplies, processes, characterizations and purposes. Polymers 13, 2815 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garg, N. et al. Section 1, randomized, rater and participant blinded placebo-controlled examine of the security, reactogenicity, tolerability and immunogenicity of H1N1 influenza vaccine delivered by VX-103 (a MIMIX microneedle patch [MAP] system) in wholesome adults. PLoS ONE 19, e0303450 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koeppel, A., Laity, P. R. & Holland, C. The affect of steel ions on native silk rheology. Acta Biomater. 117, 204–212 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Foo, C. W. P. et al. Function of pH and cost on silk protein meeting in bugs and spiders. Appl. Phys. A 82, 223–233 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Marelli, B. et al. Programming operate into mechanical varieties by directed meeting of silk bulk supplies. Proc. Natl Acad. Sci. USA 114, 451–456 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Naciri, R., Lahrir, M., Benadis, C., Chtouki, M. & Oukarroum, A. Interactive impact of potassium and cadmium on development, root morphology and chlorophyll a fluorescence in tomato plant. Sci. Rep. 11, 5384 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schaefer, C., Laity, P. R., Holland, C. & McLeish, T. C. B. Silk protein answer: a pure instance of sticky reptation. Macromolecules 53, 2669–2676 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Agricultural Manufacturing Statistics 2000–2020 FAOSTAT Analytical Temporary Sequence No. 41 (FAO, 2022).

  • Zvinavashe, A. T. et al. Degradation of regenerated silk fibroin in soil and marine environments. ACS Maintain. Chem. Eng 10, 11088–11097 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Liu, M.-J. et al. Regulatory divergence in wound-responsive gene expression between domesticated and wild tomato. Plant Cell 30, 1445–1460 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scranton, M. A., Fowler, J. H., Girke, T. & Walling, L. L. Microarray evaluation of tomato’s early and late wound response reveals new regulatory targets for leucine aminopeptidase A. PLoS ONE 8, e77889 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pearce, G., Strydom, D., Johnson, S. & Ryan, C. A. A polypeptide from tomato leaves induces wound-inducible proteinase inhibitor proteins. Science 253, 895–897 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dombrowski, J. E. Salt stress activation of wound-related genes in tomato vegetation. Plant Physiol. 132, 2098–2107 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fan, Y., Yang, W., Yan, Q., Chen, C. & Li, J. Genome-wide identification and expression evaluation of the protease inhibitor gene households in tomato. Genes 11, 1 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Capiati, D. A., País, S. M. & Téllez-Iñón, M. T. Wounding will increase salt tolerance in tomato vegetation: proof on the participation of calmodulin-like actions in cross-tolerance signalling. J. Exp. Bot. 57, 2391–2400 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schenstnyi, Ok. et al. The tomato resistance gene Bs4 suppresses leaf watersoaking phenotypes induced by AvrHah1, a transcription activator-like effector from tomato-pathogenic xanthomonads. New Phytol. 236, 1856–1870 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Merry, R. et al. Iron deficiency in soybean. Crop Sci. 62, 36–52 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Bhakta, I., Phadikar, S. & Majumder, Ok. State-of-the-art applied sciences in precision agriculture: a scientific overview. J. Sci. Meals Agric. 99, 4878–4888 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lew, T. T. S. et al. Species-independent analytical instruments for next-generation agriculture. Nat. Vegetation 6, 1408–1417 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Vitamin and Mineral Necessities in Human Vitamin 2nd edn (FAO, WHO, 2004).

  • Suhani, I., Sahab, S., Srivastava, V. & Singh, R. P. Impression of cadmium air pollution on meals security and human well being. Curr. Opin. Toxicol. 27, 1–7 (2021).

    Article 
    CAS 

    Google Scholar
     

  • FAO & WHO. Codex Alimentarius: Worldwide Meals Requirements (FAO, 1995).

  • Chung, P. J. et al. Speedy detection and quantification of plant innate immunity response utilizing Raman spectroscopy. Entrance. Plant Sci. 12, 746586 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ang, M. C.-Y. et al. Decoding early stress signaling waves in residing vegetation utilizing nanosensor multiplexing. Nat. Commun. 15, 2943 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • vander Straeten, A. et al. A microneedle vaccine printer for thermostable COVID-19 mRNA vaccines. Nat. Biotechnol. 42, 510–517 (2024).

  • Rigoldi, F. & Marelli, B. Silk peptide meeting within the presence of sodium and copper ions – scripts assortment and snippet of molecular simulations outcomes. Zenodo https://doi.org/10.5281/zenodo.15079007 (2025).

  • Huang, J. et al. CHARMM36m: an improved power discipline for folded and intrinsically disordered proteins. Nat. Strategies 14, 71–73 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liao, Q., Kamerlin, S. C. L. & Strodel, B. Growth and software of a nonbonded Cu2+ mannequin that features the Jahn–Teller impact. J. Phys. Chem. Lett. 6, 2657–2662 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Phillips, J. C. et al. Scalable molecular dynamics on CPU and GPU architectures with NAMD. J. Chem. Phys. 153, 044130 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu, X., Kaplan, D. & Cebe, P. Figuring out beta-sheet crystallinity in fibrous proteins by thermal evaluation and infrared spectroscopy. Macromolecules 39, 6161–6170 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Li, Z., Persits, N., Grey, D. J. & Ram, R. J. Computational polarized Raman microscopy on sub-surface nanostructures with sub-diffraction-limit decision. Decide. Specific 29, 38027–38043 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, J., Lui, H., McLean, D. I. & Zeng, H. Automated autofluorescence background subtraction algorithm for biomedical Raman spectroscopy. Appl. Spectrosc. 61, 1225–1232 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles