Kuhn V, et al. Purple blood cell operate and dysfunction: redox regulation, nitric oxide metabolism. Anemia Antioxid Redox Sign. 2017;26(13):718–42.
Nugent D, et al. Pathogenesis of persistent immune thrombocytopenia: elevated platelet destruction and/or decreased platelet manufacturing. Br J Haematol. 2009;146(6):585–96.
Salven P, Orpana A, Joensuu H. Leukocytes and platelets of sufferers with most cancers comprise excessive ranges of vascular endothelial development issue. Clin Most cancers Res. 1999;5(3):487–91.
Stevenson W, et al. GFI1B mutation causes a bleeding dysfunction with irregular platelet operate. J Thromb Haemost. 2013;11(11):2039–47.
Huang B, Bates M, Zhuang X. Tremendous-resolution fluorescence microscopy. Annu Rev Biochem. 2009;78:993–1016.
Davidson MW. Pioneers in optics: Joseph Jackson Lister and Maksymilian Pluta. Microscopy Immediately. 2011;19(3):54–6.
Abbe E. Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Arch Mikrosk Anat. 1873;9(1):413–68.
Rayleigh L. On the Principle of Optical Photos, with particular reference to the Microscope. J R Microsc Soc. 1903;23(4):474–82.
Ntziachristos V. Going deeper than microscopy: the optical imaging frontier in biology. Nat Strategies. 2010;7(8):603–14.
Erickson HP. Measurement and form of protein molecules on the nanometer degree decided by sedimentation, gel filtration, and electron microscopy. Biol Proced On-line. 2009;11:32–51.
Xu X, et al. Probing the dynamic crosstalk of lysosomes and mitochondria with structured illumination microscopy. TrAC, Developments Anal Chem. 2023;169: 117370.
Su QP, Ju LA. Biophysical nanotools for single-molecule dynamics. Biophys Rev. 2018;10(5):1349–57.
Walter S, Buchner J. Molecular chaperones–mobile machines for protein folding. Angew Chem Int Ed Engl. 2002;41(7):1098–113.
Rust MJ, Bates M, Zhuang X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Strategies. 2006;3(10):793–5.
Betzig E, et al. Imaging intracellular fluorescent proteins at nanometer decision. Science. 2006;313(5793):1642–5.
Hess ST, Girirajan TP, Mason MD. Extremely-high decision imaging by fluorescence photoactivation localization microscopy. Biophys J. 2006;91(11):4258–72.
Moore AS, et al. Actin cables and comet tails arrange mitochondrial networks in mitosis. Nature. 2021;591(7851):659–64.
Sahl SJ, Hell SW, Jakobs S. Fluorescence nanoscopy in cell biology. Nat Rev Mol Cell Biol. 2017;18(11):685–701.
Sigal YM, Zhou R, Zhuang X. Visualizing and discovering mobile buildings with super-resolution microscopy. Science. 2018;361(6405):880–7.
D’Este E, et al. Advancing cell biology with nanoscale fluorescence imaging: important sensible concerns. Developments Cell Biol. 2024. https://doi.org/10.1016/j.tcb.2023.12.001.
Pan L, et al. Tremendous-resolution microscopy reveals the native ultrastructure of the erythrocyte cytoskeleton. Cell Rep. 2018;22(5):1151–8.
Rönnlund D, et al. Fluorescence nanoscopy of platelets resolves platelet-state particular storage, launch and uptake of proteins, opening up future diagnostic functions. Adv Healthc Mater. 2012;1(6):707–13.
Shin E-Ok, et al. Platelet form adjustments and cytoskeleton dynamics as novel therapeutic targets for anti-thrombotic medicine. Biomol Ther. 2017;25(3):223.
Mehnert AK, Simon CS, Guizetti J. Immunofluorescence staining protocol for STED nanoscopy of Plasmodium-infected pink blood cells. Mol Biochem Parasitol. 2019;229:47–52.
Chen X, et al. Superresolution structured illumination microscopy reconstruction algorithms: a assessment. Mild Sci Appl. 2023;12(1):172.
Shao L, et al. I5S: wide-field gentle microscopy with 100-nm-scale decision in three dimensions. Biophys J. 2008;94(12):4971–83.
Schermelleh L, et al. Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy. Science. 2008;320(5881):1332–6.
Vicidomini G, Bianchini P, Diaspro A. STED super-resolved microscopy. Nat Strategies. 2018;15(3):173–82.
Jahr W, Velicky P, Danzl JG. Methods to maximise efficiency in STimulated Emission Depletion (STED) nanoscopy of organic specimens. Strategies. 2020;174:27–41.
Lelek, M., et al., Single-molecule localization microscopy. Nat Rev Strategies Primers, 2021. 1.
Jungmann R, et al. Multiplexed 3D mobile super-resolution imaging with DNA-PAINT and Change-PAINT. Nat Strategies. 2014;11(3):313–8.
Grußmayer KS, et al. Spectral cross-cumulants for multicolor super-resolved SOFI imaging. Nat Commun. 2020;11(1):3023.
Gao R, Asano SM, Boyden ES. Q&A: enlargement microscopy. BMC Biol. 2017;15(1):50.
Chen F, Tillberg PW, Boyden ES. Enlargement microscopy. Science. 2015;347(6221):543–8.
Schmidt R, et al. MINFLUX nanometer-scale 3D imaging and microsecond-range monitoring on a typical fluorescence microscope. Nat Commun. 2021;12(1):1478.
Balzarotti F, et al. Nanometer decision imaging and monitoring of fluorescent molecules with minimal photon fluxes. Science. 2017;355(6325):606–12.
Huang B, Babcock H, Zhuang X. Breaking the diffraction barrier: super-resolution imaging of cells. Cell. 2010;143(7):1047–58.
Zhao W, et al. Sparse deconvolution improves the decision of live-cell super-resolution fluorescence microscopy. Nat Biotechnol. 2022;40(4):606–17.
Wen G, et al. Excessive-fidelity structured illumination microscopy by point-spread-function engineering. Mild Sci Appl. 2021;10(1):70.
Mo Y, et al. Quantitative structured illumination microscopy through a bodily model-based background filtering algorithm reveals actin dynamics. Nat Commun. 2023;14(1):3089.
Schermelleh L, Heintzmann R, Leonhardt H. A information to super-resolution fluorescence microscopy. J Cell Biol. 2010;190:165–75.
Kwon J, et al. RESOLFT nanoscopy with photoswitchable natural fluorophores. Sci Rep. 2015;5(1):17804.
Rönnlund D, et al. Multicolor fluorescence nanoscopy by photobleaching: idea, verification, and its software to resolve selective storage of proteins in platelets. ACS Nano. 2014;8(5):4358–65.
Li H, Vaughan JC. Switchable fluorophores for single-molecule localization microscopy. Chem Rev. 2018;118(18):9412–54.
Valli J, et al. Seeing past the restrict: a information to choosing the proper super-resolution microscopy method. J Biol Chem. 2021;297(1): 100791.
Shattil SJ, Newman PJ. Integrins: dynamic scaffolds for adhesion and signaling in platelets. Blood. 2004;104(6):1606–15.
Huang J, et al. Platelet integrin αIIbβ3: sign transduction, regulation, and its therapeutic concentrating on. J Hematol Oncol. 2019;12(1):26.
Asano SM, et al. Enlargement microscopy: protocols for imaging proteins and RNA in cells and tissues. Curr Protoc Cell Biol. 2018;80(1): e56.
Migliori B, et al. Mild sheet theta microscopy for speedy high-resolution imaging of huge organic samples. BMC Biol. 2018;16(1):57.
Perkel JM. The microscope makers placing ever-larger organic samples below the highlight. Nature. 2019;575(7784):715–7.
Pang X, et al. Focusing on integrin pathways: mechanisms and advances in remedy. Sign Transduct Goal Ther. 2023;8(1):1.
Davidson KRSTJFaMW. Colocalization of fluorophores in confocal microscopy. cofocal microscopy; 2018. https://www.olympus-lifescience.com/en/microscope-resource/primer/strategies/confocal/functions/colocalization/
Gao M. Enlargement microscopy opens the door to exploring extra challenges. Nat Strategies. 2022;19(2):147–8.
Prakash Ok. On the molecular decision with MINFLUX? Philos Trans R Soc Math Phys Eng Sci. 2022;380(2220):20200145.
Zoukel A, et al. Skirting results within the variable strain scanning electron microscope: limitations and enhancements. Micron. 2013;44:107–14.
Chung J, et al. Tremendous-resolution imaging of platelet-activation course of and its quantitative evaluation. Sci Rep. 2021;11(1):10511.
Richter KN, et al. Glyoxal in its place fixative to formaldehyde in immunostaining and super-resolution microscopy. Embo j. 2018;37(1):139–59.
Go S, et al. Tremendous-resolution imaging reveals cytoskeleton-dependent organelle rearrangement inside platelets at intermediate phases of maturation. Construction. 2021;29(8):810-822.e3.
Wi JH, et al. Probing bodily properties of the mobile membrane in senescent cells by fluorescence imaging. J Phys Chem B. 2021;125(36):10182–94.
van Deventer S, Arp AB, van Spriel AB. Dynamic plasma membrane group: a posh symphony. Developments Cell Biol. 2021;31(2):119–29.
Yuan Z, Hansen SB. Ldl cholesterol regulation of membrane proteins revealed by two-color super-resolution imaging. Membranes (Basel). 2023;13(2):250.
Lickert S, et al. Platelets drive fibronectin fibrillogenesis utilizing integrin αIIbβ3. Sci Adv. 2022;8(10):eabj8331.
Heil HS, et al. Mapping densely packed αIIbβ3 receptors in murine blood platelets with enlargement microscopy. Platelets. 2022;33(6):849–58.
Khan AO, Pike JA. Tremendous-resolution imaging and quantification of megakaryocytes and platelets. Platelets. 2020;31(5):559–69.
Wang F, et al. Ageing-associated adjustments in CD47 association and interplay with thrombospondin-1 on pink blood cells visualized by super-resolution imaging. Ageing Cell. 2020;19(10): e13224.
Zuidscherwoude M, et al. The tetraspanin internet revisited by super-resolution microscopy. Sci Rep. 2015;5:12201.
Balta E, et al. Qualitative and quantitative evaluation of PMN/T-cell interactions by InFlow and super-resolution microscopy. Strategies. 2017;112:25–38.
Moore TI, et al. Measuring integrin conformational change on the cell floor with super-resolution microscopy. Cell Rep. 2018;22(7):1903–12.
Chen Y, et al. An integrin α(IIb)β(3) intermediate affinity state mediates biomechanical platelet aggregation. Nat Mater. 2019;18(7):760–9.
Chen Y, Ju LA. Biomechanical thrombosis: the darkish facet of power and daybreak of mechano-medicine. Stroke Vasc Neurol. 2020;5(2):185–97.
Hynes RO. Integrins: bidirectional, allosteric signaling machines. Cell. 2002;110(6):673–87.
Shattil SJ, Kim C, Ginsberg MH. The ultimate steps of integrin activation: the top recreation. Nat Rev Mol Cell Biol. 2010;11(4):288–300.
Kanchanawong P, et al. Nanoscale structure of integrin-based cell adhesions. Nature. 2010;468(7323):580–4.
AbuZineh Ok, et al. Microfluidics-based super-resolution microscopy permits nanoscopic characterization of blood stem cell rolling. Sci Adv. 2018;4(7):eaat5304.
Herrero-Cervera A, Soehnlein O, Kenne E. Neutrophils in persistent inflammatory ailments. Cell Mol Immunol. 2022;19(2):177–91.
El-Shebiny EM, et al. Bridging autoinflammatory and autoimmune ailments. Egypt J Intern Med. 2021;33(1):11.
Chyuan IT, Hsu P-N. TRAIL regulates T cell activation and suppresses irritation in autoimmune ailments. Cell Mol Immunol. 2020;17(12):1281–3.
Rajendiran A, Tenbrock Ok. Regulatory T cell operate in autoimmune illness. J Transl Autoimmunity. 2021;4: 100130.
Brummer T, Zipp F, Bittner S. T cell–neuron interplay in inflammatory and progressive a number of sclerosis biology. Curr Opin Neurobiol. 2022;75: 102588.
Lickert S, et al. Morphometric evaluation of unfold platelets identifies integrin α(IIb)β(3)-specific contractile phenotype. Sci Rep. 2018;8(1):5428.
Poulter NS, et al. Platelet actin nodules are podosome-like buildings depending on Wiskott-Aldrich syndrome protein and ARP2/3 complicated. Nat Commun. 2015;6:7254.
Westmoreland D, et al. Tremendous-resolution microscopy as a possible strategy to prognosis of platelet granule issues. J Thromb Haemost. 2016;14(4):839–49.
Xu P, et al. Superresolution fluorescence microscopy of platelet subcellular buildings as a possible tumor liquid biopsy. Small Strategies. 2023;7:e2300445.
Bergstrand J, et al. Tremendous-resolution microscopy can establish particular protein distribution patterns in platelets incubated with most cancers cells. Nanoscale. 2019;11(20):10023–33.
Bergstrand J, et al. Quick, streamlined fluorescence nanoscopy resolves rearrangements of SNARE and cargo proteins in platelets co-incubated with most cancers cells. J Nanobiotechnol. 2022;20(1):292.
Nerreter T, et al. Tremendous-resolution microscopy reveals ultra-low CD19 expression on myeloma cells that triggers elimination by CD19 CAR-T. Nat Commun. 2019;10(1):3137.
Schloetel JG, et al. Guided STED nanoscopy permits super-resolution imaging of blood stage malaria parasites. Sci Rep. 2019;9(1):4674.
Greinacher A, et al. Insights in ChAdOx1 nCoV-19 vaccine-induced immune thrombotic thrombocytopenia. Blood. 2021;138(22):2256–68.
Krishnegowda M, Rajashekaraiah V. Platelet issues: an outline. Blood Coag Fibrinol. 2015;26(5):479–91.
Kahr WHA, et al. Lack of the Arp2/3 complicated element ARPC1B causes platelet abnormalities and predisposes to inflammatory illness. Nat Commun. 2017;8(1):14816.
Hayward CP, et al. Outcomes of an exterior proficiency testing train on platelet dense-granule deficiency testing by complete mount electron microscopy. Am J Clin Pathol. 2009;131(5):671–5.
Henley SJ, et al. Annual report back to the nation on the standing of most cancers, half I: nationwide most cancers statistics. Most cancers. 2020;126(10):2225–49.
Ailuno G, et al. Exosomes and extracellular vesicles as rising theranostic platforms in most cancers analysis. Cells. 2020;9(12):2569.
Tian M, et al. Current advances in fluorescent probes for most cancers biomarker detection. Molecules. 2024;29(5):1168.
Roweth HG, Battinelli EM. Classes to be taught from tumor-educated platelets. Blood. 2021;137(23):3174–80.
Palacios-Acedo AL, et al. Platelets, thrombo-inflammation, and most cancers: collaborating with the enemy. Entrance Immunol. 2019;10:1805.
Italiano JE Jr, et al. Angiogenesis is regulated by a novel mechanism: pro- and antiangiogenic proteins are organized into separate platelet alpha granules and differentially launched. Blood. 2008;111(3):1227–33.
Klement GL, et al. Platelets actively sequester angiogenesis regulators. Blood. 2009;113(12):2835–42.
Malaria. 2023; https://www.who.int/news-room/fact-sheets/element/malaria.
De Niz M, et al. Progress in imaging strategies: insights gained into Plasmodium biology. Nat Rev Microbiol. 2017;15(1):37–54.
Fang H, et al. De novo-designed near-infrared nanoaggregates for super-resolution monitoring of lysosomes in cells, in complete organoids, and in vivo. ACS Nano. 2019;13(12):14426–36.
Pokrovskaya ID, et al. 3D ultrastructural evaluation of α-granule, dense granule, mitochondria, and canalicular system association in resting human platelets. Res Pract Thromb Haemost. 2020;4(1):72–85.
Sorrentino S, et al. Towards correlating construction and mechanics of platelets. Cell Adh Migr. 2016;10(5):568–75.
Eckly A, et al. Respective contributions of single and compound granule fusion to secretion by activated platelets. Blood J Am Soc Hematol. 2016;128(21):2538–49.
Pleines I, et al. Intrinsic apoptosis circumvents the practical decline of circulating platelets however doesn’t trigger the storage lesion. Blood. 2018;132(2):197–209.
De Boer P, Hoogenboom JP, Giepmans BN. Correlated gentle and electron microscopy: ultrastructure lights up! Nat Strategies. 2015;12(6):503–13.
Lux SET. Anatomy of the pink cell membrane skeleton: unanswered questions. Blood. 2016;127(2):187–99.
Zwettler FU, et al. Molecular decision imaging by post-labeling enlargement single-molecule localization microscopy (Ex-SMLM). Nat Commun. 2020;11(1):3388.
Tian J, Ma Ok-Ok. A survey on super-resolution imaging. SIViP. 2011;5(3):329–42.
Zhang C, et al. Correction of out-of-focus microscopic pictures by deep studying. Comput Struct Biotechnol J. 2022;20:1957–66.
Speiser A, et al. Deep studying permits quick and dense single-molecule localization with excessive accuracy. Nat Strategies. 2021;18(9):1082–90.
Cervi D, et al. Platelet-associated PF-4 as a biomarker of early tumor development. Blood. 2008;111(3):1201–7.
Wiesner T, et al. Differential adjustments in platelet VEGF, Tsp, CXCL12, and CXCL4 in sufferers with metastatic most cancers. Clin Exp Metastasis. 2010;27(3):141–9.
Di X, et al. Quantitatively monitoring in situ mitochondrial thermal dynamics by upconversion nanoparticles. Nano Lett. 2021;21(4):1651–8.
Di X, et al. Spatiotemporally mapping temperature dynamics of lysosomes and mitochondria utilizing cascade organelle-targeting upconversion nanoparticles. Proc Natl Acad Sci U S A. 2022;119(45): e2207402119.