Faubert, B., Solmonson, A. & DeBerardinis, R. J. Metabolic reprogramming and most cancers development. Science 368, 152–163 (2020).
Martinez-Reyes, I. & Chandel, N. S. Most cancers metabolism: trying ahead. Nat. Rev. Most cancers 21, 669–680 (2021).
Heiden, M. G. V., Cantley, L. C. & Thompson, C. B. Understanding the Warburg impact: the metabolic necessities of cell proliferation. Science 324, 1029–1033 (2009).
Schiliro, C. & Firestein, B. L. Mechanisms of metabolic reprogramming in most cancers cells supporting enhanced progress and proliferation. Cells 10, 1056–1097 (2021).
Koundouros, N. & Poulogiannis, G. Reprogramming of fatty acid metabolism in most cancers. Br. J. Most cancers 122, 4–22 (2020).
Eniafe, J. & Jiang, S. The useful roles of TCA cycle metabolites in most cancers. Oncogene 40, 3351–3363 (2021).
Nakhle, J., Rodriguez, A. M. & Vignais, M. L. Multifaceted roles of mitochondrial parts and metabolites in metabolic illnesses and most cancers. Int. J. Mol. Sci. 21, 4405–4436 (2020).
Abdel-Wahab, A. F., Mahmoud, W. & Al-Harizy, R. M. Concentrating on glucose metabolism to suppress most cancers development: potential of anti-glycolytic most cancers remedy. Pharmacol. Res. 150, 104511 (2019).
Di Cosimo, S. et al. Lonidamine: efficacy and security in medical trials for the remedy of strong tumors. Medication At this time 39, 157–174 (2003).
Qi, H. et al. Shikonin induced apoptosis mediated by endoplasmic reticulum stress in colorectal most cancers cells. J. Most cancers 13, 243–252 (2022).
Dowsett, M. et al. Aromatase inhibitors versus tamoxifen in early breast most cancers: patient-level meta-analysis of the randomised trials. Lancet 386, 1341–1352 (2015).
Ma, C. X., Reinert, T., Chmielewska, I. & Ellis, M. J. Mechanisms of aromatase inhibitor resistance. Nat. Rev. Most cancers 15, 261–275 (2015).
Ruijtenberg, S. & van den Heuvel, S. Coordinating cell proliferation and differentiation: antagonism between cell cycle regulators and cell type-specific gene expression. Cell Cycle 15, 196–212 (2016).
Gaude, E. & Frezza, C. Tissue-specific and convergent metabolic transformation of most cancers correlates with metastatic potential and affected person survival. Nat. Commun. 7, 13041 (2016).
Garrett, M. et al. Metabolic characterization of isocitrate dehydrogenase (IDH) mutant and IDH wildtype gliomaspheres uncovers cell type-specific vulnerabilities. Most cancers Metab. 6, 4 (2018).
Suzuki, H. et al. Metabolic alteration in hepatocellular carcinoma: mechanism of lipid accumulation in well-differentiated hepatocellular carcinoma. Can. J. Gastroenterol. Hepatol. 2021, 8813410 (2021).
Ma, R. et al. Change of glycolysis to gluconeogenesis by dexamethasone for remedy of hepatocarcinoma. Nat. Commun. 4, 2508 (2013).
Soballe, P. W. & Herlyn, M. Mobile pathways resulting in melanoma differentiation—therapeutic implications. Melanoma Res. 4, 213–223 (1994).
Lei, M. J., Dong, Y., Solar, C. X. & Zhang, X. H. Resveratrol inhibits proliferation, promotes differentiation and melanogenesis in HT-144 melanoma cells via inhibition of MEK/ERK kinase pathway. Microb. Pathog. 111, 410–413 (2017).
Chaabane, F., Pinon, A., Simon, A., Ghedira, Okay. & Chekir-Ghedira, L. Phytochemical potential of Daphne gnidium in inhibiting progress of melanoma cells and enhancing melanogenesis of B16-F0 melanoma. Cell Biochem. Funct. 31, 460–467 (2013).
Sung, J. Y. & Cheong, J. H. New immunometabolic technique based mostly on cell type-specific metabolic reprogramming within the tumor immune microenvironment. Cells 11, 768 (2022).
Elia, I., Schmieder, R., Christen, S. & Fendt, S. M. Organ-specific most cancers metabolism and its potential for remedy. Handb. Exp. Pharmacol. 233, 321–353 (2016).
Costello, L. C. & Franklin, R. B. Novel position of zinc within the regulation of prostate citrate metabolism and its implications in prostate most cancers. Prostate 35, 285–296 (1998).
Franklin, R. B. & Costello, L. C. Zinc as an anti-tumor agent in prostate most cancers and in different cancers. Arch. Biochem. Biophys. 463, 211–217 (2007).
Goode, D. R., Totten, R. Okay., Heeres, J. T. & Hergenrothert, P. J. Identification of promiscuous small molecule activators in high-throughput enzyme activation screens. J. Med. Chem. 51, 2346–2349 (2008).
Williams, Okay. P. & Scott, J. E. Enzyme assay design for high-throughput screening. Strategies Mol. Biol. 565, 107–126 (2009).
Werle, M. & Bernkop-Schnurch, A. Methods to enhance plasma half life time of peptide and protein medication. Amino Acids 30, 351–367 (2006).
Casero, R. A., Stewart, T. M. & Pegg, A. E. Polyamine metabolism and most cancers: therapies, challenges and alternatives. Nat. Rev. Most cancers 18, 681–695 (2018).
Frezza, C. Histidine metabolism boosts most cancers remedy. Nature 559, 484–485 (2018).
Pal, P., Hales, Okay., Petrik, J. & Hales, D. B. Professional-apoptotic and anti-angiogenic actions of 2-methoxyestradiol and docosahexaenoic acid, the biologically derived energetic compounds from flaxseed weight-reduction plan, in stopping ovarian most cancers. J. Ovarian Res. 12, 49–65 (2019).
Tapsell, L. C., Neale, E. P., Satija, A. & Hu, F. B. Meals, vitamins, and dietary patterns: interconnections and implications for dietary tips. Adv. Nutr. 7, 445–454 (2016).
Fanzo, J. et al. Vitamins, meals, diets, individuals: selling wholesome consuming. Curr. Dev. Nutr. 4, nzaa069 (2020).
Zhuang, C. et al. Small molecule-drug conjugates: a novel technique for cancer-targeted remedy. Eur. J. Med. Chem. 163, 883–895 (2019).
Donaldson, M. S. Diet and most cancers: a assessment of the proof for an anti-cancer weight-reduction plan. Nutr. J. 3, 19 (2004).
De Cicco, P. et al. Diet and breast most cancers: a literature assessment on prevention, remedy and recurrence. Vitamins 11, 1514 (2019).
Kim, M. et al. Thermohydrogel containing melanin for photothermal most cancers remedy. Macromol. Biosci. 17, 1600371 (2017).
Zhao, X. et al. Melanin-inspired design: making ready sustainable photothermal supplies from lignin for vitality technology. ACS Appl. Mater. Interfaces 13, 7600–7607 (2021).
Wang, Okay. et al. Melanin-perovskite composites for photothermal conversion. Adv. Power Mater. 9, 1901753 (2019).
Lunt, S. Y. & Vander Heiden, M. G. Cardio glycolysis: assembly the metabolic necessities of cell proliferation. Annu. Rev. Cell Dev. Biol. 27, 441–464 (2011).
Gatenby, R. A. & Gillies, R. J. Why do cancers have excessive cardio glycolysis? Nat. Rev. Most cancers 4, 891–899 (2004).
Saeedi, M., Khezri, Okay., Zakaryaei, A. S. & Mohammadamini, H. A complete assessment of the therapeutic potential of alpha-arbutin. Phytother. Res. 35, 4136–4154 (2021).
Zolghadri, S. et al. A complete assessment on tyrosinase inhibitors. J. Enzym. Inhib. Med. Chem. 34, 279–309 (2019).
Liu, J. L. et al. Spectroscopy and molecular docking evaluation reveal structural specificity of flavonoids within the inhibition of alpha-glucosidase exercise. Int. J. Biol. Macromol. 152, 981–989 (2020).
Prakash, J. et al. Tumor-targeted intracellular supply of anticancer medication via the mannose-6-phosphate/insulin-like progress issue II receptor. Int. J. Most cancers 126, 1966–1981 (2010).
Sarna, M., Krzykawska-Serda, M., Jakubowska, M., Zadlo, A. & Urbanska, Okay. Melanin presence inhibits melanoma cell unfold in mice in a novel mechanical style. Sci. Rep. 9, 9280 (2019).
Halaban, R. et al. Aberrant retention of tyrosinase within the endoplasmic reticulum mediates accelerated degradation of the enzyme and contributes to the dedifferentiated phenotype of amelanotic melanoma cells. Proc. Natl Acad. Sci. USA 94, 6210–6215 (1997).
Wellbrock, C. & Arozarena, I. Microphthalmia-associated transcription consider melanoma growth and MAP-kinase pathway focused remedy. Pigment Cell Melanoma Res. 28, 390–406 (2015).
Zhao, X., Fiske, B., Kawakami, A., Li, J. & Fisher, D. E. Regulation of MITF stability by the USP13 deubiquitinase. Nat. Commun. 2, 414 (2011).
Wu, M. et al. c-Package triggers twin phosphorylations, which couple activation and degradation of the important melanocyte issue Mi. Genes Dev. 14, 301–312 (2000).
Gabra, M. B. I. et al. Dietary glutamine supplementation suppresses epigenetically-activated oncogenic pathways to inhibit melanoma tumour progress. Nat. Commun. 11, 3326 (2020).
Gonzalez, P. S. et al. Mannose impairs tumour progress and enhances chemotherapy. Nature 563, 719 (2018).
Allen, T. M. & Cullis, P. R. Liposomal drug supply techniques: from idea to medical purposes. Adv. Drug Deliv. Rev. 65, 36–48 (2013).
Wu, M. X. & Yang, Y. W. Metallic–natural framework (MOF)-based drug/cargo supply and most cancers remedy. Adv. Mater. 29, 1606134 (2017).
Zahorowska, B., Crowe, P. J. & Yang, J. L. Mixed therapies for most cancers: a assessment of EGFR-targeted monotherapy and mixture remedy with different medication. J. Most cancers Res. Clin. Oncol. 135, 1137–1148 (2009).
Wang, C. et al. Inducing and exploiting vulnerabilities for the remedy of liver most cancers. Nature 574, 268–272 (2019).
Marullo, R. et al. The metabolic adaptation evoked by arginine enhances the impact of radiation in mind metastases. Sci. Adv. 7, eabg1964 (2021).