On-chip direct synthesis of boron nitride memristors


  • Romero, F. J. et al. Resistive switching in graphene oxide. Entrance. Mater. 7, 1–5 (2020).


    Google Scholar
     

  • Moazzeni, A., Riyahi Madvar, H., Hamedi, S. & Kordrostami, Z. Fabrication of graphene oxide-based resistive switching reminiscence by the spray pyrolysis method for neuromorphic computing. ACS Appl. Nano Mater. 6, 2236–2248 (2023).

    CAS 

    Google Scholar
     

  • Ahmed, T. et al. Blended ionic-electronic cost transport in layered black-phosphorus for low-power reminiscence. Adv. Funct. Mater. 32, 2202923 (2022).


    Google Scholar
     

  • Ge, R. et al. Atomristor: nonvolatile resistance switching in atomic sheets of transition steel dichalcogenides. Nano Lett. 18, 434–441 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Lee, H. S. et al. Twin-gated MoS2 memtransistor crossbar array. Adv. Funct. Mater. 30, 2001339 (2020).

  • Wu, Q. T. et al. Two-dimensional hexagonal boron nitride based mostly memristor. Acta Phys. Sin. 66, 228504 (2017).

  • Zhu, Okay. et al. Graphene-boron nitride-graphene cross-point memristors with three steady resistive states. ACS Appl. Mater. Interfaces 11, 37999–38005 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Shi, Y. et al. Digital synapses product of layered two-dimensional supplies. Nat. Electron. 1, 458–465 (2018).


    Google Scholar
     

  • Xie, J., Afshari, S. & Sanchez Esqueda, I. Hexagonal boron nitride (h-BN) memristor arrays for analog-based machine studying {hardware}. npj 2D Mater. Appl. 6, 71 (2022).

  • Wu, X. et al. Thinnest nonvolatile reminiscence based mostly on monolayer h-BN. Adv. Mater. 31, 1900175 (2019).


    Google Scholar
     

  • Zhao, H. et al. Atomically skinny femtojoule memristive system. Adv. Mater. 29, 1703232 (2017).


    Google Scholar
     

  • Chen, S. et al. Wafer-scale integration of two-dimensional supplies in high-density memristive crossbar arrays for synthetic neural networks. Nat. Electron. 3, 638–645 (2020).

    CAS 

    Google Scholar
     

  • Teja Nibhanupudi, S. S. et al. Extremely-fast switching memristors based mostly on two-dimensional supplies. Nat. Commun. 15, 2334 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Afshari, S. et al. Dot-product computation and logistic regression with 2D hexagonal-boron nitride (h-BN) memristor arrays. 2D Mater. 10, 35031 (2023).

    CAS 

    Google Scholar
     

  • Xie, J. et al. Quantum conductance in vertical hexagonal boron nitride memristors with graphene-edge contacts. Nano Lett. 24, 2473–2480 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Chen, H. et al. Introduction of defects in hexagonal boron nitride for vacancy-based 2D memristors. Nanoscale 15, 4309–4316 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Wen, C. et al. Superior information encryption utilizing 2D supplies. Adv. Mater. 33, 2100187 (2021).


    Google Scholar
     

  • Shen, Y. et al. Variability and yield in h-BN-based memristive circuits: the position of every sort of defect. Adv. Mater. 33, e2103656 (2021).

    PubMed 

    Google Scholar
     

  • Lanza, M. et al. Again-end-of-line integration of 2D supplies on silicon microchips. In Proc. Worldwide Electron Gadgets Assembly 7–10 (IEEE, 2023).

  • Merenkov, I. S. et al. Orientation-controlled, low-temperature plasma development and functions of h-BN nanosheets. Nano Res. 12, 91–99 (2019).

    CAS 

    Google Scholar
     

  • Hoang, D. Q. et al. Progress mechanisms of hBN crystalline nanostructures with RF sputtering deposition: challenges, alternatives, and future views. Phys. Scr. 98, 085003 (2023).

  • Hoang, D. Q. et al. Elucidation of the expansion mechanism of sputtered 2D hexagonal boron nitride nanowalls. Cryst. Progress Des. 16, 3699–3708 (2016).

    CAS 

    Google Scholar
     

  • Yu, J. et al. Vertically aligned boron nitride nanosheets: chemical vapor synthesis, ultraviolet mild emission, and superhydrophobicity. ACS Nano 4, 414–422 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Andújar, J. L., Bertran, E. & Maniette, Y. Microstructure of extremely oriented, hexagonal, boron nitride skinny movies grown on crystalline silicon by radio frequency plasma-assisted chemical vapor deposition. J. Appl. Phys. 80, 6553–6555 (1996).


    Google Scholar
     

  • Toth, P. Nanostructure quantification of turbostratic carbon by HRTEM picture evaluation: state-of-the-art, biases, sensitivity and greatest practices. Carbon 178, 688–707 (2021).

    CAS 

    Google Scholar
     

  • Yamamoto, M. et al. Low-temperature direct synthesis of multilayered h-BN with out catalysts by inductively coupled plasma-enhanced chemical vapor deposition. ACS Omega 8, 5497–5505 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, D. et al. Conformal hexagonal-boron nitride dielectric interface for tungsten diselenide units with improved mobility and thermal dissipation. Nat. Commun. 10, 5140 (2019).


    Google Scholar
     

  • Yuan, Y. et al. On the standard of economic chemical vapour deposited hexagonal boron nitride. Nat. Commun. 15, 2651 (2024).


    Google Scholar
     

  • Lee, S. H. et al. Enhancements in structural and optical properties of wafer-scale hexagonal boron nitride movie by post-growth annealing. Sci. Rep. 9, 14420 (2019).


    Google Scholar
     

  • Radhakrishnan, S. et al. Fluorinated h-BN as a magnetic semiconductor. Sci. Adv. 3, e1700842 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, S. J. et al. Risky and nonvolatile resistive switching coexistence in conductive level hexagonal boron nitride monolayer. ACS Nano 17, 13457–13466 (2023).


    Google Scholar
     

  • Lim, E. W. & Ismail, R. Conduction mechanism of valence change resistive switching reminiscence: a survey. Electron 4, 586–613 (2015).

    CAS 

    Google Scholar
     

  • Li, Y. et al. Resistive switching properties of monolayer h-BN atomristors with totally different electrodes. Appl. Phys. Lett. 120, 183504 (2022).

  • Pan, C. et al. Coexistence of grain-boundaries-assisted bipolar and threshold resistive switching in multilayer hexagonal boron nitride. Adv. Funct. Mater. 27, 1703703 (2017).

  • Cai, Z., Liu, L. & Zhou, P. The event of switch applied sciences for superior 2D circuits integration. InfoMat 6, 304–322 (2024).

  • Nakatani, M. et al. Prepared-to-transfer two-dimensional supplies utilizing tunable adhesive drive tapes. Nat. Electron. 7, 119–130 (2024).


    Google Scholar
     

  • Pham, P. V. et al. Switch of 2D movies: from imperfection to perfection. ACS Nano 18, 14841–14876 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lupina, G. et al. Residual metallic contamination of transferred chemical vapor deposited graphene. ACS Nano 9, 4776–4785 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Wan, W. et al. A compute-in-memory chip based mostly on resistive random-access reminiscence. Nature 608, 504–512 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rao, M. et al. 1000’s of conductance ranges in memristors built-in on CMOS. Nature 615, 823–829 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Kim, H., Mahmoodi, M. R., Nili, H. & Strukov, D. B. 4K-memristor analog-grade passive crossbar circuit. Nat. Commun. 12, 5191 (2021).


    Google Scholar
     

  • Haensch, W. et al. Compute in-memory with non-volatile parts for neural networks: a assessment from a co-design perspective. Adv. Mater. 35, e2204944 (2023).

    PubMed 

    Google Scholar
     

  • Music, W. et al. Programming memristor arrays with arbitrarily excessive precision for analog computing. Science 383, 903–910 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Park, H., Mastro, M. A., Tadjer, M. J. & Kim, J. Programmable multilevel memtransistors based mostly on van der Waals heterostructures. Adv. Electron. Mater. 5, 1800720 (2019).


    Google Scholar
     

  • Khot, A. C. et al. Amorphous boron nitride memristive system for high-density reminiscence and neuromorphic computing functions. ACS Appl. Mater. Interfaces 14, 10546–10557 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Zhu, Okay. et al. Hybrid 2D–CMOS microchips for memristive functions. Nature 618, 57–62 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, S. Neuro-inspired computing with rising nonvolatile memorys. Proc. IEEE 106, 260–285 (2018).

    CAS 

    Google Scholar
     

  • Kim, H., Kim, T., Kim, J. & Kim, J. J. Neural community optimized to resistive reminiscence with nonlinear current-voltage traits. ACM J. Emerg. Technol. Comput. Syst. 14, 46 (2018).


    Google Scholar
     

  • Jiang, Z. et al. COPS: an environment friendly and reliability-enhanced programming scheme for analog RRAM and on-chip implementation of denoising diffusion probabilistic mannequin. In Proc. sixtieth ACM/IEEE Design Automation Convention 8–11 (ACM, 2023).

  • Yao, P. et al. Absolutely hardware-implemented memristor convolutional neural community. Nature 577, 641–646 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Ambrogio, S. et al. Statistical fluctuations in HfOx resistive-switching reminiscence: half II—random telegraph noise. IEEE Trans. Electron Gadgets 61, 2920–2927 (2014).

    CAS 

    Google Scholar
     

  • Puglisi, F. M. in Noise in Nanoscale Semiconductor Gadgets (ed. Grasser, T.) 87–133 (Springer, 2020).

  • Becker, T. et al. Resistive switching units producing large random telegraph noise. IEEE Electron Machine Lett. 43, 146–149 (2022).

    CAS 

    Google Scholar
     

  • Pazos, S. et al. {Hardware} implementation of a real random quantity generator integrating a hexagonal boron nitride memristor with a business microcontroller. Nanoscale 15, 2171–2180 (2022).


    Google Scholar
     

  • Maestro, M. et al. New excessive decision random telegraph noise (RTN) characterization technique for resistive RAM. Strong. State Electron. 115, 140–145 (2016).

    CAS 

    Google Scholar
     

  • Martin-Martinez, J., Diaz, J., Rodriguez, R., Nafria, M. & Aymerich, X. New weighted time lag technique for the evaluation of random telegraph alerts. IEEE Electron Machine Lett. 35, 479–481 (2014).


    Google Scholar
     

  • Pazos, S. et al. Excessive-temporal-resolution characterization reveals excellent random telegraph noise and the origin of dielectric breakdown in h-BN memristors. Adv. Funct. Mater. 2213816, 2213816 (2023).


    Google Scholar
     

  • Huang, Y. C. et al. 15.7 A 32Mb RRAM in a 12nm FinFET know-how with a 0.0249 μm2 bit-cell, a 3.2 GB/s learn throughput, a 10K cycle write endurance and a 10-year retention at 105 °C. In Proc. IEEE Worldwide Strong-State Circuits Convention 288–290 (IEEE, 2024).

  • Krishnan, G. et al. Sturdy RRAM-based in-memory computing in mild of mannequin stability. In Proc. IEEE Worldwide Reliability Physics Symposium 1–5 (IEEE, 2021).

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles