Remark of chiral emission enabled by collective guided resonances


  • Miroshnichenko, A. E. & Kivshar, Y. S. Fano resonances in all-dielectric oligomers. Nano Lett. 12, 6459–6463 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Kuznetsov, A. I., Miroshnichenko, A. E., Brongersma, M. L., Kivshar, Y. S. & Luk’yanchuk, B. Optically resonant dielectric nanostructures. Science 354, aag2472 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Limonov, M. F., Rybin, M. V., Poddubny, A. N. & Kivshar, Y. S. Fano resonances in photonics. Nat. Photon. 11, 543–554 (2017).

    Article 

    Google Scholar
     

  • Yan, J., Yuan, Z. & Gao, S. Finish and central plasmon resonances in linear atomic chains. Phys. Rev. Lett. 98, 216602 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Auguié, B. & Barnes, W. L. Collective resonances in gold nanoparticle arrays. Phys. Rev. Lett. 101, 143902 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Giannini, V., Vecchi, G. & Gómez Rivas, J. Lighting up multipolar floor plasmon polaritons by collective resonances in arrays of nanoantennas. Phys. Rev. Lett. 105, 266801 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Dai, X. et al. Two-dimensional double-quantum spectra reveal collective resonances in an atomic vapor. Phys. Rev. Lett. 108, 193201 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Macha, P. et al. Implementation of a quantum metamaterial utilizing superconducting qubits. Nat. Commun. 5, 5146 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Anderson, P. W. Extra is totally different: damaged symmetry and the character of the hierarchical construction of science. Science 177, 393–396 (1972).

    Article 
    PubMed 

    Google Scholar
     

  • Dicke, R. H. Coherence in spontaneous radiation processes. Phys. Rev. 93, 99–110 (1954).

    Article 

    Google Scholar
     

  • Gross, M. & Haroche, S. Superradiance: an essay on the idea of collective spontaneous emission. Phys. Rep. 93, 301–396 (1982).

    Article 

    Google Scholar
     

  • Chong, Ok. E. et al. Remark of Fano resonances in all-dielectric nanoparticle oligomers. Small 10, 1985–1990 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Yesilkoy, F. et al. Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces. Nat. Photon. 13, 390–396 (2019).

    Article 

    Google Scholar
     

  • Perrin, M., Lippi, G. & Politi, A. Optical gratings within the collective interplay between radiation and atoms, together with recoil and collisions. J. Mod. Choose. 49, 419–429 (2002).

    Article 

    Google Scholar
     

  • Yu, D., Lupton, E. M., Liu, M., Liu, W. & Liu, F. Collective magnetic habits of graphene nanohole superlattices. Nano Res. 1, 56–62 (2008).

    Article 

    Google Scholar
     

  • Tserkezis, C., Gantzounis, G. & Stefanou, N. Collective plasmonic modes in ordered assemblies of metallic nanoshells. J. Phys. Condens. Matter 20, 075232 (2008).

    Article 

    Google Scholar
     

  • Fan, S. & Joannopoulos, J. D. Evaluation of guided resonances in photonic crystal slabs. Phys. Rev. B 65, 235112 (2002).

    Article 

    Google Scholar
     

  • Allen, L., Beijersbergen, M. W., Spreeuw, R. J. C. & Woerdman, J. P. Orbital angular momentum of sunshine and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A 45, 8185–8189 (1992).

    Article 
    PubMed 

    Google Scholar
     

  • Lavery, M. P. J., Speirits, F. C., Barnett, S. M. & Padgett, M. J. Detection of a spinning object utilizing mild’s orbital angular momentum. Science 341, 537–540 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Paterson, L. et al. Managed rotation of optically trapped microscopic particles. Science 292, 912–914 (2001).

    Article 
    PubMed 

    Google Scholar
     

  • MacDonald, M. P. et al. Creation and manipulation of three-dimensional optically trapped constructions. Science 296, 1101–1103 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, J. et al. Terabit free-space information transmission using orbital angular momentum multiplexing. Nat. Photon. 6, 488–496 (2012).

    Article 

    Google Scholar
     

  • Lei, T. et al. Huge particular person orbital angular momentum channels for multiplexing enabled by Dammann gratings. Mild Sci. Appl. 4, e257 (2015).

    Article 

    Google Scholar
     

  • Xie, Z. et al. Extremely-broadband on-chip twisted mild emitter for optical communications. Mild Sci. Appl. 7, 18001 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, B. et al. Built-in optical vortex microcomb. Nat. Photon. 18, 625–631 (2024).

    Article 

    Google Scholar
     

  • Wang, B. et al. Producing optical vortex beams by momentum-space polarization vortices centred at certain states within the continuum. Nat. Photon. 14, 623–628 (2020).

    Article 

    Google Scholar
     

  • Huang, C. et al. Ultrafast management of vortex microlasers. Science 367, 1018–1021 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Mohamed, S. et al. Controlling topology and polarization state of lasing photonic certain states in continuum. Laser Photon. Rev. 16, 2100574 (2022).

    Article 

    Google Scholar
     

  • Hwang, M.-S. et al. Vortex nanolaser based mostly on a photonic disclination cavity. Nat. Photon. 18, 286–293 (2023).

    Article 

    Google Scholar
     

  • Miao, P. et al. Orbital angular momentum microlaser. Science 353, 464–467 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, Z. et al. Tunable topological cost vortex microlaser. Science 368, 760–763 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, Z. et al. Ultrafast management of fractional orbital angular momentum of microlaser emissions. Mild Sci. Appl. 9, 179 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, B. et al. Vibrant solid-state sources for single photons with orbital angular momentum. Nat. Nanotechnol. 16, 302–307 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, Z. et al. Spin–orbit microlaser emitting in a four-dimensional Hilbert area. Nature 612, 246–251 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Li, H. et al. Orbital angular momentum vertical-cavity surface-emitting lasers. Optica 2, 547–552 (2015).

    Article 

    Google Scholar
     

  • Carlon Zambon, N. et al. Optically controlling the emission chirality of microlasers. Nat. Photon. 13, 283–288 (2019).

    Article 

    Google Scholar
     

  • Solar, W. et al. Lead halide perovskite vortex microlasers. Nat. Commun. 11, 4862 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Z. et al. Remark of miniaturized certain states within the continuum with ultra-high high quality elements. Sci. Bull. 67, 359–366 (2022).

    Article 

    Google Scholar
     

  • Notomi, M. Concept of sunshine propagation in strongly modulated photonic crystals: refractionlike habits within the neighborhood of the photonic band hole. Phys. Rev. B 62, 10696–10705 (2000).

    Article 

    Google Scholar
     

  • Notomi, M. Destructive refraction in photonic crystals. Choose. Quantum Electron. 34, 133–143 (2002).

    Article 

    Google Scholar
     

  • Liang, Y., Peng, C., Sakai, Ok., Iwahashi, S. & Noda, S. Three-dimensional coupled-wave mannequin for square-lattice photonic crystal lasers with transverse electrical polarization: a basic strategy. Phys. Rev. B 84, 195119 (2011).

    Article 

    Google Scholar
     

  • Chen, Z. et al. Analytical idea of finite-size photonic crystal slabs close to the band edge. Choose. Specific 30, 14033–14047 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Ren, Y. et al. Low-threshold nanolasers based mostly on miniaturized certain states within the continuum. Sci. Adv. 8, eade8817 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wiersig, J., Kim, S. W. & Hentschel, M. Uneven scattering and nonorthogonal mode patterns in optical microspirals. Phys. Rev. A 78, 053809 (2008).

    Article 

    Google Scholar
     

  • Wiersig, J. et al. Nonorthogonal pairs of copropagating optical modes in deformed microdisk cavities. Phys. Rev. A 84, 023845 (2011).

    Article 

    Google Scholar
     

  • Wiersig, J. Construction of whispering-gallery modes in optical microdisks perturbed by nanoparticles. Phys. Rev. A 84, 063828 (2011).

    Article 

    Google Scholar
     

  • Peng, B. et al. Chiral modes and directional lasing at distinctive factors. Proc. Natl Acad. Sci. USA 113, 6845–6850 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, W., Kaya Özdemir, Ş., Zhao, G., Wiersig, J. & Yang, L. Distinctive factors improve sensing in an optical microcavity. Nature 548, 192–196 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Feng, L., Wong, Z. J., Ma, R.-M., Wang, Y. & Zhang, X. Single-mode laser by parity-time symmetry breaking. Science 346, 972–975 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Hoang, T. X., Leykam, D. & Kivshar, Y. Photonic flatband resonances in a number of mild scattering. Phys. Rev. Lett. 132, 043803 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Hoang, T. X. et al. Collective nature of high-Q resonances in finite-size photonic metastructures. Phys. Rev. Res. 7, 013316 (2025).

    Article 

    Google Scholar
     

  • Kodigala, A. et al. Lasing motion from photonic certain states in continuum. Nature 541, 196–199 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Gao, X. et al. Dirac-vortex topological cavities. Nat. Nanotechnol. 15, 1012–1018 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Yang, L., Li, G., Gao, X. & Lu, L. Topological-cavity surface-emitting laser. Nat. Photon. 16, 279–283 (2022).

    Article 

    Google Scholar
     

  • Contractor, R. et al. Scalable single-mode surface-emitting laser through open-Dirac singularities. Nature 608, 692–698 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Luan, H.-Y., Ouyang, Y.-H., Zhao, Z.-W., Mao, W.-Z. & Ma, R.-M. Reconfigurable moiré nanolaser arrays with part synchronization. Nature 624, 282–288 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Hirose, Ok. et al. Watt-class high-power, high-beam-quality photonic-crystal lasers. Nat. Photon. 8, 406–411 (2014).

    Article 

    Google Scholar
     

  • Yoshida, M. et al. Double-lattice photonic-crystal resonators enabling high-brightness semiconductor lasers with symmetric narrow-divergence beams. Nat. Mater. 18, 121–128 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Yoshida, M. et al. Excessive-brightness scalable continuous-wave single-mode photonic-crystal laser. Nature 618, 727–732 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles