Miroshnichenko, A. E. & Kivshar, Y. S. Fano resonances in all-dielectric oligomers. Nano Lett. 12, 6459–6463 (2012).
Kuznetsov, A. I., Miroshnichenko, A. E., Brongersma, M. L., Kivshar, Y. S. & Luk’yanchuk, B. Optically resonant dielectric nanostructures. Science 354, aag2472 (2016).
Limonov, M. F., Rybin, M. V., Poddubny, A. N. & Kivshar, Y. S. Fano resonances in photonics. Nat. Photon. 11, 543–554 (2017).
Yan, J., Yuan, Z. & Gao, S. Finish and central plasmon resonances in linear atomic chains. Phys. Rev. Lett. 98, 216602 (2007).
Auguié, B. & Barnes, W. L. Collective resonances in gold nanoparticle arrays. Phys. Rev. Lett. 101, 143902 (2008).
Giannini, V., Vecchi, G. & Gómez Rivas, J. Lighting up multipolar floor plasmon polaritons by collective resonances in arrays of nanoantennas. Phys. Rev. Lett. 105, 266801 (2010).
Dai, X. et al. Two-dimensional double-quantum spectra reveal collective resonances in an atomic vapor. Phys. Rev. Lett. 108, 193201 (2012).
Macha, P. et al. Implementation of a quantum metamaterial utilizing superconducting qubits. Nat. Commun. 5, 5146 (2014).
Anderson, P. W. Extra is totally different: damaged symmetry and the character of the hierarchical construction of science. Science 177, 393–396 (1972).
Dicke, R. H. Coherence in spontaneous radiation processes. Phys. Rev. 93, 99–110 (1954).
Gross, M. & Haroche, S. Superradiance: an essay on the idea of collective spontaneous emission. Phys. Rep. 93, 301–396 (1982).
Chong, Ok. E. et al. Remark of Fano resonances in all-dielectric nanoparticle oligomers. Small 10, 1985–1990 (2014).
Yesilkoy, F. et al. Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces. Nat. Photon. 13, 390–396 (2019).
Perrin, M., Lippi, G. & Politi, A. Optical gratings within the collective interplay between radiation and atoms, together with recoil and collisions. J. Mod. Choose. 49, 419–429 (2002).
Yu, D., Lupton, E. M., Liu, M., Liu, W. & Liu, F. Collective magnetic habits of graphene nanohole superlattices. Nano Res. 1, 56–62 (2008).
Tserkezis, C., Gantzounis, G. & Stefanou, N. Collective plasmonic modes in ordered assemblies of metallic nanoshells. J. Phys. Condens. Matter 20, 075232 (2008).
Fan, S. & Joannopoulos, J. D. Evaluation of guided resonances in photonic crystal slabs. Phys. Rev. B 65, 235112 (2002).
Allen, L., Beijersbergen, M. W., Spreeuw, R. J. C. & Woerdman, J. P. Orbital angular momentum of sunshine and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A 45, 8185–8189 (1992).
Lavery, M. P. J., Speirits, F. C., Barnett, S. M. & Padgett, M. J. Detection of a spinning object utilizing mild’s orbital angular momentum. Science 341, 537–540 (2013).
Paterson, L. et al. Managed rotation of optically trapped microscopic particles. Science 292, 912–914 (2001).
MacDonald, M. P. et al. Creation and manipulation of three-dimensional optically trapped constructions. Science 296, 1101–1103 (2002).
Wang, J. et al. Terabit free-space information transmission using orbital angular momentum multiplexing. Nat. Photon. 6, 488–496 (2012).
Lei, T. et al. Huge particular person orbital angular momentum channels for multiplexing enabled by Dammann gratings. Mild Sci. Appl. 4, e257 (2015).
Xie, Z. et al. Extremely-broadband on-chip twisted mild emitter for optical communications. Mild Sci. Appl. 7, 18001 (2018).
Chen, B. et al. Built-in optical vortex microcomb. Nat. Photon. 18, 625–631 (2024).
Wang, B. et al. Producing optical vortex beams by momentum-space polarization vortices centred at certain states within the continuum. Nat. Photon. 14, 623–628 (2020).
Huang, C. et al. Ultrafast management of vortex microlasers. Science 367, 1018–1021 (2020).
Mohamed, S. et al. Controlling topology and polarization state of lasing photonic certain states in continuum. Laser Photon. Rev. 16, 2100574 (2022).
Hwang, M.-S. et al. Vortex nanolaser based mostly on a photonic disclination cavity. Nat. Photon. 18, 286–293 (2023).
Miao, P. et al. Orbital angular momentum microlaser. Science 353, 464–467 (2016).
Zhang, Z. et al. Tunable topological cost vortex microlaser. Science 368, 760–763 (2020).
Zhang, Z. et al. Ultrafast management of fractional orbital angular momentum of microlaser emissions. Mild Sci. Appl. 9, 179 (2020).
Chen, B. et al. Vibrant solid-state sources for single photons with orbital angular momentum. Nat. Nanotechnol. 16, 302–307 (2021).
Zhang, Z. et al. Spin–orbit microlaser emitting in a four-dimensional Hilbert area. Nature 612, 246–251 (2022).
Li, H. et al. Orbital angular momentum vertical-cavity surface-emitting lasers. Optica 2, 547–552 (2015).
Carlon Zambon, N. et al. Optically controlling the emission chirality of microlasers. Nat. Photon. 13, 283–288 (2019).
Solar, W. et al. Lead halide perovskite vortex microlasers. Nat. Commun. 11, 4862 (2020).
Chen, Z. et al. Remark of miniaturized certain states within the continuum with ultra-high high quality elements. Sci. Bull. 67, 359–366 (2022).
Notomi, M. Concept of sunshine propagation in strongly modulated photonic crystals: refractionlike habits within the neighborhood of the photonic band hole. Phys. Rev. B 62, 10696–10705 (2000).
Notomi, M. Destructive refraction in photonic crystals. Choose. Quantum Electron. 34, 133–143 (2002).
Liang, Y., Peng, C., Sakai, Ok., Iwahashi, S. & Noda, S. Three-dimensional coupled-wave mannequin for square-lattice photonic crystal lasers with transverse electrical polarization: a basic strategy. Phys. Rev. B 84, 195119 (2011).
Chen, Z. et al. Analytical idea of finite-size photonic crystal slabs close to the band edge. Choose. Specific 30, 14033–14047 (2022).
Ren, Y. et al. Low-threshold nanolasers based mostly on miniaturized certain states within the continuum. Sci. Adv. 8, eade8817 (2022).
Wiersig, J., Kim, S. W. & Hentschel, M. Uneven scattering and nonorthogonal mode patterns in optical microspirals. Phys. Rev. A 78, 053809 (2008).
Wiersig, J. et al. Nonorthogonal pairs of copropagating optical modes in deformed microdisk cavities. Phys. Rev. A 84, 023845 (2011).
Wiersig, J. Construction of whispering-gallery modes in optical microdisks perturbed by nanoparticles. Phys. Rev. A 84, 063828 (2011).
Peng, B. et al. Chiral modes and directional lasing at distinctive factors. Proc. Natl Acad. Sci. USA 113, 6845–6850 (2016).
Chen, W., Kaya Özdemir, Ş., Zhao, G., Wiersig, J. & Yang, L. Distinctive factors improve sensing in an optical microcavity. Nature 548, 192–196 (2017).
Feng, L., Wong, Z. J., Ma, R.-M., Wang, Y. & Zhang, X. Single-mode laser by parity-time symmetry breaking. Science 346, 972–975 (2014).
Hoang, T. X., Leykam, D. & Kivshar, Y. Photonic flatband resonances in a number of mild scattering. Phys. Rev. Lett. 132, 043803 (2024).
Hoang, T. X. et al. Collective nature of high-Q resonances in finite-size photonic metastructures. Phys. Rev. Res. 7, 013316 (2025).
Kodigala, A. et al. Lasing motion from photonic certain states in continuum. Nature 541, 196–199 (2017).
Gao, X. et al. Dirac-vortex topological cavities. Nat. Nanotechnol. 15, 1012–1018 (2020).
Yang, L., Li, G., Gao, X. & Lu, L. Topological-cavity surface-emitting laser. Nat. Photon. 16, 279–283 (2022).
Contractor, R. et al. Scalable single-mode surface-emitting laser through open-Dirac singularities. Nature 608, 692–698 (2022).
Luan, H.-Y., Ouyang, Y.-H., Zhao, Z.-W., Mao, W.-Z. & Ma, R.-M. Reconfigurable moiré nanolaser arrays with part synchronization. Nature 624, 282–288 (2023).
Hirose, Ok. et al. Watt-class high-power, high-beam-quality photonic-crystal lasers. Nat. Photon. 8, 406–411 (2014).
Yoshida, M. et al. Double-lattice photonic-crystal resonators enabling high-brightness semiconductor lasers with symmetric narrow-divergence beams. Nat. Mater. 18, 121–128 (2019).
Yoshida, M. et al. Excessive-brightness scalable continuous-wave single-mode photonic-crystal laser. Nature 618, 727–732 (2023).