Subvolt high-speed free-space modulator with electro-optic metasurface


  • Yu, N. et al. Mild propagation with part discontinuities: generalized legal guidelines of reflection and refraction. Science 334, 333–337 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kuznetsov, A. I. et al. Roadmap for optical metasurfaces. ACS Photon. 11, 816–865 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Chen, W. T. et al. A broadband achromatic metalens for focusing and imaging within the seen. Nat. Nanotechnol. 13, 220–226 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, S. et al. A broadband achromatic metalens within the seen. Nat. Nanotechnol. 13, 227–232 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rubin, N. A. et al. Matrix Fourier optics permits a compact full-Stokes polarization digicam. Science 365, eaax1839 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Miyata, M., Nemoto, N., Shikama, Okay., Kobayashi, F. & Hashimoto, T. Full-color-sorting metalenses for high-sensitivity picture sensors. Optica 8, 1596–1604 (2021).

    Article 

    Google Scholar
     

  • Balthasar Mueller, J. P., Rubin, N. A., Devlin, R. C., Groever, B. & Capasso, F. Metasurface polarization optics: impartial part management of arbitrary orthogonal states of polarization. Phys. Rev. Lett. 118, 113901 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiong, B. et al. Breaking the limitation of polarization multiplexing in optical metasurfaces with engineered noise. Science 379, 294–299 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gopakumar, M. et al. Full-colour 3D holographic augmented-reality shows with metasurface waveguides. Nature 629, 791–797 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oh, J. et al. Adjoint-optimized metasurfaces for compact mode-division multiplexing. ACS Photon. 9, 929–937 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Soma, G. et al. Compact and scalable polarimetric self-coherent receiver utilizing a dielectric metasurface. Optica 10, 604–611 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Komatsu, Okay. et al. Scalable multi-core dual-polarization coherent receiver utilizing a metasurface optical hybrid. J. Mild. Technol. 42, 4013–4022 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Li, S.-Q. et al. Section-only transmissive spatial gentle modulator based mostly on tunable dielectric metasurface. Science 364, 1087–1090 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Holsteen, A. L., Cihan, A. F. & Brongersma, M. L. Temporal shade mixing and dynamic beam shaping with silicon metasurfaces. Science 365, 257–260 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Y. et al. Electrically reconfigurable non-volatile metasurface utilizing low-loss optical phase-change materials. Nat. Nanotechnol. 16, 661–666 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shaltout, A. M., Shalaev, V. M. & Brongersma, M. L. Spatiotemporal gentle management with lively metasurfaces. Science 364, eaat3100 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, P. C. et al. Dynamic beam steering with all-dielectric electro-optic III–V multiple-quantum-well metasurfaces. Nat. Commun. 10, 3654 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Park, J. et al. All-solid-state spatial gentle modulator with impartial part and amplitude management for three-dimensional LiDAR purposes. Nat. Nanotechnol. 16, 69–76 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Panuski, C. L. et al. A full degree-of-freedom spatiotemporal gentle modulator. Nat. Photon. 16, 834–842 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Sisler, J. et al. Electrically tunable space-time metasurfaces at optical frequencies. Nat. Nanotechnol. 19, 1491–1498 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ren, F. et al. Floor-normal plasmonic modulator utilizing sub-wavelength metallic grating on electro-optic polymer skinny movie. Choose. Commun. 352, 116–120 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, J., Kosugi, Y., Otomo, A., Nakano, Y. & Tanemura, T. Energetic metasurface modulator with electro-optic polymer utilizing bimodal plasmonic resonance. Choose. Specific 25, 30304–30311 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Miyano, H. et al. Dimerized plasmonic-organic grating for high-speed metasurface modulator. In OptoElectronics and Communications Convention/Worldwide Convention on Photonics in Switching and Computing TuD3-2 (IEEE, 2022).

  • Solar, X. et al. Manipulating twin sure states within the continuum for environment friendly spatial gentle modulator. Nano Lett. 22, 9982–9989 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, J. et al. Excessive-speed metasurface modulator utilizing completely absorptive bimodal plasmonic resonance. APL Photon. 8, 121304 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, L. et al. Plasmonic metafibers electro-optic modulators. Mild Sci. Appl. 12, 198 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Benea-Chelmus, I.-C. et al. Electro-optic spatial gentle modulator from an engineered natural layer. Nat. Commun. 12, 5928 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Solar, X. et al. Electro-optic polymer and silicon nitride hybrid spatial gentle modulators based mostly on a metasurface. Choose. Specific 29, 25543–25551 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Solar, X. & Qiu, F. Polarization impartial high-speed spatial modulators based mostly on an electro-optic polymer and silicon hybrid metasurface. Photon. Res. 10, 2893 (2022).

    Article 

    Google Scholar
     

  • Benea-Chelmus, I.-C. et al. Gigahertz free-space electro-optic modulators based mostly on Mie resonances. Nat. Commun. 13, 3170 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ogasawara, M. et al. Electro-optic polymer surface-normal modulator utilizing silicon high-contrast grating resonator. In Convention on Lasers and Electro-Optics JTh2A.48 (2019).

  • Zheng, T., Gu, Y., Kwon, H., Roberts, G. & Faraon, A. Dynamic gentle manipulation by way of silicon-organic slot metasurfaces. Nat. Commun. 15, 1557 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kosugi, Y., Yamada, T., Otomo, A., Nakano, Y. & Tanemura, T. Floor-normal electro-optic-polymer modulator with silicon subwavelength grating. IEICE Electron. Specific 13, 20160595–20160595 (2016).

    Article 

    Google Scholar
     

  • Fukui, T. et al. 17 GHz lossless InP-membrane lively metasurface. Preprint at https://doi.org/10.48550/arXiv.2505.07072 (2025).

  • Damgaard-Carstensen, C., Thomaschewski, M. & Bozhevolnyi, S. I. Electro-optic metasurface-based free-space modulators. Nanoscale 14, 11407–11414 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Damgaard-Carstensen, C. & Bozhevolnyi, S. I. Nonlocal electro-optic metasurfaces for free-space gentle modulation. Nanophotonics 12, 2953–2962 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Damgaard-Carstensen, C., Yezekyan, T., Brongersma, M. L. & Bozhevolnyi, S. I. Extremely environment friendly, tunable, electro-optic, reflective metasurfaces based mostly on quasi-bound states within the continuum. ACS Nano 19, 11999–12006 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Weigand, H. et al. Enhanced electro-optic modulation in resonant metasurfaces of lithium niobate. ACS Photon. 8, 3004–3009 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Trajtenberg-Mills, S. et al. LNoS: lithium niobate on silicon spatial gentle modulator. Preprint at https://doi.org/10.48550/arXiv.2402.14608 (2024).

  • Di Francescantonio, A. et al. Environment friendly GHz electro-optical modulation with a nonlocal lithium niobate metasurface within the linear and nonlinear regime. Nat. Commun. 16, 7000 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ju, Y., Zhang, W., Zhao, Y., Deng, X. & Zuo, H. Polarization impartial lithium niobate electro-optic modulator based mostly on guided mode resonance. Choose. Mater. 148, 114928 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Karvounis, A. et al. Electro-optic metasurfaces based mostly on barium titanate nanoparticle movies. Adv. Choose. Mater. 8, 2000623 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Weigand, H. C. et al. Nanoimprinting solution-derived barium titanate for electro-optic metasurfaces. Nano Lett. 24, 5536–5542 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weiss, A. et al. Tunable metasurface utilizing thin-film lithium niobate within the telecom regime. ACS Photon. 9, 605–612 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Overvig, A. C., Shrestha, S. & Yu, N. Dimerized excessive distinction gratings. Nanophotonics 7, 1157–1168 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Jin, W. et al. Benzocyclobutene barrier layer for suppressing conductance in nonlinear optical gadgets throughout electrical area poling. Appl. Phys. Lett. 104, 243304 (2014).

    Article 

    Google Scholar
     

  • Kieninger, C. et al. Extremely-high electro-optic exercise demonstrated in a silicon-organic hybrid modulator. Optica 5, 739–748 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Solar, Okay., Wang, W. & Han, Z. Excessive-Q resonances in periodic photonic buildings. Phys. Rev. B 109, 085426 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Koshelev, Okay., Lepeshov, S., Liu, M., Bogdanov, A. & Kivshar, Y. Uneven metasurfaces with high-Q resonances ruled by sure states within the continuum. Phys. Rev. Lett. 121, 193903 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Joannopoulos, J. D., Johnson, S. G., Winn, J. N. & Meade, R. D. Photonic Crystals: Molding the Circulation of MildSecond Version (Princeton Univ. Press, 2008).

  • Chang, F., Onohara, Okay. & Mizuochi, T. Ahead error correction for 100 G transport networks. IEEE Commun. Magazine. 48, S48–S55 (2010).

    Article 

    Google Scholar
     

  • Chen, Z. et al. Remark of miniaturized sure states within the continuum with ultra-high high quality components. Sci. Bull. 67, 359–366 (2022).

    Article 

    Google Scholar
     

  • Dolia, V. et al. Very-large-scale-integrated top quality issue nanoantenna pixels. Nat. Nanotechnol. 19, 1290–1298 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ledentsov, N. et al. Excessive velocity VCSEL know-how and purposes. J. Mild. Technol. 40, 1749–1763 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Ren, C., Komatsu, Okay., Soma, G., Nakano, Y. & Tanemura, T. Metasurface-based purposeful optical splitter for a spatially parallelized dual-polarization coherent modulator. Choose. Lett. 49, 7238–7241 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Morita, R. et al. Excessive-speed high-power free-space optical communication by way of straight modulated watt-class photonic-crystal surface-emitting lasers. Optica 11, 971 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Hammond, S. R., Elder, D. L. & Johnson, L. E. Plasmonic natural hybrid electro-optic modulators as a platform for course of optimization in direction of extraordinary nonlinearity and distinctive stability enabling industrial purposes. Proc. SPIE 12418, Natural Photonic Supplies and Units XXV 1241807 (SPIE, 2023).

  • Xu, H. et al. Ultrahigh electro-optic coefficients, excessive index of refraction, and long-term stability from Diels–Alder cross-linkable binary molecular glasses. Chem. Mater. 32, 1408–1421 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Soma, G. et al. Subvolt high-speed free-space modulator with electro-optic metasurface. Figshare https://doi.org/10.6084/m9.figshare.28281509 (2025).

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles